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ABSTRACT. A simple bound is presented for the probability that the sum of nonnegative inde-
pendent random variables is exceeded by its expectation by more than a positive number t. If the
variables have the same expectation the bound is slightly weaker than the Bennett and Bernstein
inequalities, otherwise it can be significantly stronger. The inequality extends to one-sidedly
bounded martingale difference sequences.
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1. I NTRODUCTION

Suppose that the{Xi}m
i=1 are independent random variables with finite first and second mo-

ments and use the notationS :=
∑

i Xi. Let t > 0. This note discusses the inequality

(1.1) Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i E [X2
i ]

)
,

valid under the assumption that theXi are non-negative.
Similar bounds have a history beginning in the nineteenth century with the results of Bien-

aymé and Chebyshev ([3]). Setσ2 = (1/m)
∑

i

(
E [X2

i ]− (E [Xi])
2). The inequality

Pr {|E [S]− S| ≥ mε} ≤ σ2

mε2

requires minimal assumptions on the distributions of the individual variables and, if applied
to identically distributed variables, establishes the consistency of the theory of probability: If
the Xi represent the numerical results of independent repetitions of some experiment, then
the probability that the average result deviates from its expectation by more than a value ofε
decreases to zero as asσ2/ (mε2), whereσ2 is the average variance of theXi.
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2 ANDREAS MAURER

If the Xi satisfy some additional boundedness conditions the deviation probabilities can be
shown to decrease exponentially. Corresponding results were obtained in the middle of the
twentieth century by Bernstein [2], Cramér, Chernoff [4], Bennett [1] and Hoeffding [7]. Their
results, summarized in [7], have since found important applications in statistics, operations
research and computer science (see [6]). A general method of proof, sometimes called the
exponential moment method, is explained in [10] and [8].

Inequality (1.1) is of a similar nature and can be directly compared to one-sided versions
of Bernstein’s and Bennett’s inequalities (see Theorem 3 in [7]) which also require theXi to
be bounded on only one side. It turns out that, once reformulated for non-negative variables,
the classical inequalities are stronger than (1.1) if theXi are similar in the sense that their
expectations are uniformly concentrated. If the expectations of the individual variables are very
scattered and/or for large deviationst our inequality (1.1) becomes stronger.

Apart from being stronger than Bernstein’s theorem under perhaps somewhat extreme cir-
cumstances, the new inequality (1.1) appears attractive because of its simplicity. The proof
(suggested by Colin McDiarmid) is very easy and direct and the method also gives a concentra-
tion inequality for martingales of one-sidedly bounded differences.

In Section 2 we give a first proof of (1.1) and list some simple consequences. In Section
3 our result is compared to Bernstein’s inequality, in Section 4 it is extended to martingales.
All random variables below are assumed to be members of the algebra of measurable functions
defined on some probability space(Ω, Σ, µ). Order and equality in this algebra are assumed to
hold only almost everywhere w.r.t.µ, i.e. X ≥ 0 meansX ≥ 0 almost everywhere w.r.t.µ on
Ω.

2. STATEMENT AND PROOF OF THE M AIN RESULT

Theorem 2.1. Let the{Xi}m
i=1 be independent random variables,E [X2

i ] < ∞, Xi ≥ 0 . Set
S =

∑
i Xi and lett > 0. Then

(2.1) Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i E [X2
i ]

)
.

Proof. We first claim that forx ≥ 0

e−x ≤ 1− x +
1

2
x2.

To see this letf(x) = e−x andg (x) = 1− x + (1/2) x2 and recall that for every realx

(2.2) ex ≥ 1 + x

so thatf ′(x) = −e−x ≤ −1 + x = g′ (x). Sincef (0) = 1 = g (0) this impliesf (x) ≤ g (x)
for all x ≥ 0, as claimed.

It follows that for anyi ∈ {1, . . . ,m} and anyβ ≥ 0 we have

E
[
e−βXi

]
≤ 1− βE [Xi] +

β2

2
E
[
X2

i

]
≤ exp

(
−βE [Xi] +

β2

2
E
[
X2

i

])
,

where (2.2) was used again in the second inequality. This establishes the bound

(2.3) ln E
[
e−βXi

]
≤ −βE [Xi] +

β2

2
E
[
X2

i

]
.
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Using the independence of theXi this implies

ln E
[
e−βS

]
= ln

∏
i

E
[
e−βXi

]
=
∑

i

ln E
[
e−βXi

]
≤ −βE [S] +

β2

2

∑
i

E
[
X2

i

]
.(2.4)

Let χ be the characteristic function of[0,∞). Then for anyβ ≥ 0, x ∈ R we must have
χ (x) ≤ exp (βx) so, using (2.4),

ln Pr {E [S]− S ≥ t} = ln E [χ (−t + E [S]− S)]

≤ ln E [exp (β (−t + E [S]− S))]

= −βt + βE [S] + ln E
[
e−βS

]
≤ −βt +

β2

2

∑
i

E
[
X2

i

]
.

We minimize the last expression withβ = t/
∑

i E [X2
i ] ≥ 0 to obtain

ln Pr {E [S]− S ≥ t} ≤ −t2

2
∑

i E [X2
i ]

,

which implies (2.1). �

Some immediate and obvious consequences are given in

Corollary 2.2. Let the{Xi}m
i=1 be independent random variables,E [X2

i ] < ∞ . SetS =∑
i Xi and lett > 0.

(1) If Xi ≤ bi and setσ2
i = E [X2

i ]− (E [Xi])
2 then

Pr {S − E [S] ≥ t} ≤ exp

(
−t2

2
∑

i σ
2
i + 2

∑
i (bi − E [Xi])

2

)
.

(2) If 0 ≤ Xi ≤ bi then

Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i biE [Xi]

)
.

(3) If 0 ≤ Xi ≤ bi then

Pr {E [S]− S ≥ t} ≤ exp

(
−t2

2
∑

i b
2
i

)
Proof. (1) follows from application of Theorem 2.1 to the random variablesYi = bi −Xi since

2
∑

E
[
Y 2

i

]
= 2

∑(
E
[
X2

i

]
− E [Xi]

2 + E [Xi]
2 − 2biE [Xi] + b2

i

)
= 2

∑
i

σ2
i + 2

∑
i

(bi − E [Xi])
2 ,

while (2) is immediate from Theorem 2.1 and (3) follows trivially from (2). �

J. Inequal. Pure and Appl. Math., 4(1) Art. 15, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 ANDREAS MAURER

3. COMPARISON TO OTHER BOUNDS

Observe that part (3) of Corollary 2.2 is similar to the familiar Hoeffding inequality (Theorem
2 in [7]) but weaker by a factor of 4 in the exponent. If there is information on the expectations
of the Xi and E [Xi] ≤ bi/4 then (2) of Corollary 2.2 becomes stronger than Hoeffding’s
inequality. If thebi are all equal then (2) is weaker than what we get from the relative-entropy
Chernoff bound (Theorem 1 in [7]).

It is natural to compare our result to Bernstein’s theorem which also requires only one-sided
boundedness. We state a corresponding version of the theorem (see [1] or [10] or [9])

Theorem 3.1(Bernstein’s Inequality). Let{Xi}m
i=1 be independent random variables withXi−

E [Xi] ≤ d for all i ∈ {1, . . . ,m}. LetS =
∑

Xi andt > 0. Then, withσ2
i = E [X2

i ]−E [Xi]
2

we have

(3.1) Pr {S − E [S] ≥ t} ≤ exp

(
−t2

2
∑

i σ
2
i + 2td/3

)
.

Now suppose we knowXi ≤ bi for all i. In this case we can apply part (1) of Corollary 2.2.
On the other hand if we setd = maxi (bi − E [Xi]) thenXi − E [Xi] ≤ d for all i and we can
apply Bernstein’s theorem as well. The latter is evidently tighter than part (1) of Corollary 2.2
if and only if

t

3
max

i
(bi − E [Xi]) <

∑
i

(bi − E [Xi])
2 .

We introduce the abbreviationsB∞ = maxi (bi − E [Xi]), B1 =
∑

i (bi − E [Xi]) andB2 =∑
i (bi − E [Xi])

2. Both results are trivial unlesst < B1. Assumet = εB1, where0 < ε < 1,
then Bernstein’s theorem is stronger in the interval

0 < ε <
3B2

B1B∞
,

which is never empty. The new inequality is stronger in the interval

3B2

B1B∞
< ε < 1.

The latter interval may be empty, in which case Bernstein’s inequality is stronger for all nontriv-
ial deviationsε. This is clearly the case if all thebi−E [Xi] are equal, for thenB2/ (B1B∞) = 1.
This happens, for example, if theXi are identically distributed. The fact that the new inequal-
ity can be stronger in a significant range of deviations may be seen if we setE [Xi] = 0 and
bi = 1/i for i ∈ {1, . . . ,m}, then

3B2

B1B∞
<

π2

2
∑m

i=1 (1/i)
→ 0 asm →∞.

In this case, for every given deviationε, the new inequality becomes stronger for sufficiently
largem.

To summarize this comparison: If the deviation is small and/or the individual variables have
a rather uniform behaviour, then Bernstein’s inequality is stronger, otherwise weaker than the
new result. A similar analysis applies to the stronger Bennett inequality and the yet stronger
Theorem 3 in [7]. In all these cases a single uniform bound on the variablesXi −E [Xi] enters
into the bound on the deviation probability.

J. Inequal. Pure and Appl. Math., 4(1) Art. 15, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


NON-NEGATIVE VARIABLES 5

4. M ARTINGALES

The key to the proof of Theorem 2.1 lies in inequality (2.3):

X ≥ 0, β ≥ 0 =⇒ ln E
[
e−βX

]
≤ −βE [X] +

β2

2
E
[
X2
]

.

Apart from the inequalitye−x ≤ 1− x + (1/2) x2 (for non-negativex) its derivation uses only
monotonicity, linearity and normalization of the expectation value. It therefore also applies to
conditional expectations.

Lemma 4.1. LetX, W be random variables,W not necessarily real valued,β ≥ 0.

(1) If X ≥ 0 then

ln E
[
e−βX |W

]
≤ −βE [X|W ] +

β2

2
E
[
X2|W

]
.

(2) If X ≤ b andE [X|W ] = 0 andE [X2|W ] ≤ σ2 then

ln E
[
eβX |W

]
≤ β2

2

(
σ2 + b2

)
.

Proof. To see part 1 retrace the first part of the proof of Theorem 2.1. Part 2 follows from
applying part 1 toY = b−X to get

ln E
[
eβX |W

]
= βb + ln E

[
e−βY |W

]
≤ βb− βE [Y |W ] +

β2

2
E
[
Y 2|W

]
=

β2

2
E
[
Y 2|W

]
=

β2

2

(
E
[
X2|W

]
+ b2

)
.

�

Part (2) of this lemma gives a concentration inequality for martingales of one-sidedly bounded
differences, with less restrictive assumptions than [5], Corollary 2.4.7.

Theorem 4.2. Let Xi be random variables ,Sn =
∑n

i=1 Xi, S0 = 0. Suppose thatbi, σi > 0
and thatE [Xn|Sn−1] = 0, E [X2

n|Sn−1] ≤ σ2
n andXn ≤ bn, then, forβ ≥ 0,

(4.1) ln E
[
eβSn

]
≤ β2

2

n∑
i=1

(
σ2

i + b2
i

)
and fort > 0,

(4.2) Pr {Sn ≥ t} ≤ exp

(
−t2

2
∑n

i=1 (σ2
i + b2

i )

)
.

Proof. We prove (4.1) by induction onn. The casen = 1 is just part (2) of the lemma with
W = 0. Assume that (4.1) holds for a given value ofn. If Σn is theσ-algebra generated bySn

theneβSn is Σn-measurable, so

E
[
eβSn+1|Sn

]
= E

[
eβSneβXn+1|Sn

]
= eβSnE

[
eβXn+1|Sn

]
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almost surely. Thus,

ln E
[
eβSn+1

]
= ln E

[
E
[
eβSn+1|Sn

]]
= ln E

[
eβSnE

[
eβXn+1|Sn

]]
≤ ln E

[
eβSn

]
+

β2

2

(
σ2

n+1 + b2
n+1

)
(4.3)

≤ β2

2

n+1∑
i=1

(
σ2

i + b2
i

)
,(4.4)

where Lemma 4.1, part 2 was used to get (4.3) and the induction hypothesis was used for (4.4).
To get (4.2), we proceed as in the proof of Theorem 2.1: Forβ ≥ 0,

ln Pr {Sn ≥ t} ≤ ln E
[
eβ(Sn−t)

]
≤ −βt +

β2

2

n∑
i=1

(
σ2

i + b2
i

)
.

Minimizing the last expression withβ = t/
∑

(σ2
i + b2

i ) gives (4.2). �

5. CONCLUSION

It remains to be seen if our inequality has any interesting practical implications. In view of
the comparison to Bernstein’s theorem this would have to be in a situation where the random
variables considered have a highly non-uniform behaviour and the deviations to which the result
is applied are large. Apart from its potential utility the new inequality may have some didactical
value due to its simplicity.
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