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Abstract

We introduce inequalities involving multipliers for complex-valued multivalent
harmonic functions, using two sequences of positive real numbers. By spe-
cializing those sequences, we determine representation theorems, distortion
bounds, integral convolutions, convex combinations and neighborhoods for such
functions. The theorems presented, in many cases, confirm or generalize var-
ious well-known results for corresponding classes of multivalent or univalent
harmonic functions.

2000 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.
Key words: Multivalent harmonic, Multivalent harmonic starlike, Multivalent har-

monic convex, Multiplier, Integral convolution, Neighborhood.
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1. Introduction
A continuous complex-valued functionf = u+iv defined in a simply connected
complex domainD is said to be harmonic inD if both u andv are real harmonic
in D. Such functions admit the representationf = h + ḡ, whereh andg are
analytic inD. In [5], it was observed thatf = h + ḡ is locally univalent and
sense preserving if and only if|g′(z)| < |h′(z)|, z ∈ D.

The study of harmonic functions which are multivalent in the unit discU =
{z ∈ C : |z| < 1} was initiated by Duren, Hengartner and Laugesen [6]. How-
ever, passing from harmonic univalent functions to the harmonic multivalent
functions turns out to be quite non-trivial. In view of the argument principle
for harmonic functions obtained in [6], the second author and Jahangiri [1, 2]
introduced and studied certain subclasses of the familyH(m), m ≥ 1, of all
m-valent harmonic and orientation preserving functions inU. A function f in
H(m) can be expressed asf = h + g, whereh andg are analytic functions of
the form

h (z) = zm +
∞∑

n=2

an+m−1z
n+m−1,(1.1)

g (z) =
∞∑

n=1

bn+m−1z
n+m−1, |bm| < 1.

The classH(1) of harmonic univalent functions was studied by Clunie and
Sheil-Small [5].

Let SH(m,α), m ≥ 1 and0 ≤ α < 1 denote the class of functionsf =
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h + g ∈ H(m) which satisfy the condition

(1.2)
∂

∂θ
(arg(f(reiθ))) ≥ mα,

for eachz = reiθ, 0 ≤ θ < 2π, and0 ≤ r < 1. A functionf in SH(m,α) is
called an m-valent harmonic starlike function of orderα. Also, letTH(m,α),
m ≥ 1, denote the class of functionsf = h + g ∈ SH(m, α) so thath andg
are of the form

h (z) = zm −
∞∑

n=2

|an+m−1|zn+m−1,(1.3)

g (z) =
∞∑

n=1

|bn+m−1|zn+m−1, |bm| < 1.

The classTH(m, α) was studied by second author and Jahangiri in [1, 2]. In
particular, they stated the following:

Theorem A. Let f = h + ḡ be given by (1.3). Thenf is in TH(m, α) if and
only if

(1.4)
∞∑

n=1

[
n− 1 + m(1− α)

m(1− α)
|an+m−1|+

n− 1 + m(1 + α)

m(1− α)
|bn+m−1|

]
≤ 2,

wheream = 1 andm ≥ 1.

Analogous toTH(m, α) is the classKH(m, α) of m-valent harmonic con-
vex functions of orderα, 0 ≤ α < 1. More precisely, a functionf = h + g,
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whereh andg are of the form (1.3), is in KH(m,α) if and only if it satisfies
the condition

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
≥ mα,

for eachz = reiθ, 0 ≤ θ < 2π, and0 ≤ r < 1.

Theorem B ([4]). Let f = h + ḡ be given by (1.3). Thenf is in KH(m,α) if
and only if

(1.5)
∞∑

n=1

n + m− 1

m2(1− α)

[
(n− 1 + m(1− α))|an+m−1|

+ (n− 1 + m(1 + α))|bn+m−1|
]
≤ 2,

wheream = 1 andm ≥ 1.

Inequalities (1.4) and (1.5) as well as several such known inequalities in the
literature are the motivating forces for introducing a multiplier family
Fm({cn+m−1}, {dn+m−1}) for m ≥ 1. A functionf = h + ḡ, whereh andg are
given by (1.3), is said to be in the multiplier familyFm({cn+m−1}, {dn+m−1})
if there exist sequences{cn+m−1} and{dn+m−1} of positive real numbers such
that

∞∑
n=1

[
cn+m−1

m
|an+m−1|+

dn+m−1

m
|bn+m−1|

]
≤ 2,(1.6)

cm = m, dm|bm| < m.
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The multipliers{cn+m−1} and{dn+m−1} provide a transition from multivalent
harmonic starlike functions to multivalent harmonic convex functions, including
many more subclasses ofH(m) andH(1). For example,

(1.7) Fm

({
n− 1 + m(1− α)

1− α

}
,

{
n− 1 + m(1 + α)

1− α

})
≡ TH(m, α),

(1.8) Fm

({
(n + m− 1)(n− 1 + m(1− α))

m(1− α)

}
,{

(n + m− 1)(n− 1 + m(1 + α))

m(1− α)

})
≡ KH(m, α),

(1.9) Fm({n + m− 1}, {n + m− 1}) ≡ TH(m, 0) := TH(m),

Fm

({
(n + m− 1)2

m

}
,

{
(n + m− 1)2

m

})
≡ KH(m, 0)(1.10)

:= KH(m),

(1.11) F1({n}, {n}) ≡ TH(1, 0) = TH,

(1.12) F1({n2}, {n2}) ≡ KH(1, 0) := KH,
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(1.13) F1({np}, {np}) := F ({np}, {np}), p > 0,

(1.14) F1({cn}, {dn}) := F ({cn}, {dn}).

While (1.7), (1.9) and (1.11) follow immediately from TheoremA, (1.8),
(1.10) and (1.12) are consequences of TheoremB. Note thatTH andKH in
(1.11) and (1.12) were studied in [9] as well as [10]. Also, by lettingm =
1, α = 0, cn = dn = np for p > 0 andb1 = 0, the classesF1({np}, {np}) were
studied in [8]. Finally, (1.14) follows from (1.6) by settingm = 1 which was
studied in [3].

In this paper, we determine representation theorems, distortion bounds, con-
volutions, convex combinations and neighborhoods of functions in
Fm({cn+m−1}, {dn+m−1}). As illustrations of our results, the corresponding
results for certain families are presented in the corollaries.
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2. Main Results
If (n + m− 1) ≤ cn+m−1 and(n + m− 1) ≤ dn+m−1, then by TheoremA we
have

Fm({cn+m−1}, {dn+m−1}) ⊂ TH(m).

Consequently, the functionsFm({cn+m−1}, {dn+m−1}) are sense-preserving, har-
monic and multivalent inU. We first observe that if

f1(z) = zm −
∞∑

n=2

|a1(n+m−1)
|zn+m−1 +

∞∑
n=1

|b1(n+m−1)
|z̄n+m−1

and

f2(z) = zm −
∞∑

n=2

|a2(n+m−1)
|zn+m−1 +

∞∑
n=1

|b2(n+m−1)
|z̄n+m−1

are inFm({cn+m−1}, {dn+m−1}) and0 ≤ λ ≤ 1, then so is the linear combina-
tion λf1 +(1−λ)f2 by (1.6). Therefore,Fm({cn+m−1}, {dn+m−1}) is a convex
family.

Next we determine the extreme points of the closed convex hull of the family
Fm({cn+m−1}, {dn+m−1}), denoted byclcoFm({cn+m−1}, {dn+m−1}).

Theorem 2.1.A functionf = h + g is in clcoFm({cn+m−1}, {dn+m−1}) if and
only if f has the representation

(2.1) f(z) =
∞∑

n=1

(λn+m−1hn+m−1(z) + µn+m−1gn+m−1(z)),
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where

(n + m− 1) ≤ cn+m−1, (n + m− 1) ≤ dn+m−1, λn+m−1 ≥ 0,

µn+m−1 ≥ 0,
∞∑

n=1

(λn+m−1 + µn+m−1) = 1, hm(z) = zm,

hn+m−1(z) = zm − m

cn+m−1

zn+m−1 and gn+m−1(z) = zm +
m

dn+m−1

z̄n+m−1.

In particular, the extreme points ofFm({cn+m−1}, {dn+m−1}) are {hn+m−1},
{gn+m−1}.

Proof. For functionsf of the form (2.1) we have

f(z) = λmhm(z) +
∞∑

n=2

λn+m−1

(
zm − m

cn+m−1

zn+m−1

)
+

∞∑
n=1

µn+m−1

(
zm +

m

dn+m−1

z̄n+m−1

)
= zm −

∞∑
n=2

λn+m−1
m

cn+m−1

zn+m−1 +
∞∑

n=1

µn+m−1
m

dn+m−1

z̄n+m−1.

Then
∞∑

n=2

λn+m−1
m

cn+m−1

cn+m−1 +
∞∑

n=1

µn+m−1
m

dn+m−1

dn+m−1

=
∞∑

n=2

mλn+m−1 +
∞∑

n=1

mµn+m−1 ≤ m,
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and sof ∈ clcoFm({cn+m−1}, {dn+m−1}).
Conversely, supposef ∈ clcoFm({cn+m−1}, {dn+m−1}). We set

λn+m−1 =
cn+m−1

m
|an+m−1|, (n = 2, 3, . . . ),

µn+m−1 =
dn+m−1

m
|bn+m−1|, (n = 1, 2, 3, . . . ),

and

λm = 1−
∞∑

n=2

λn+m−1 −
∞∑

n=1

µn+m−1.

Therefore, by using routine computations,f can be written as

f(z) =
∞∑

n=1

(λn+m−1hn+m−1(z) + µn+m−1gn+m−1(z)).

In view of (1.7), Theorem2.1yields:

Corollary 2.2 ([2]). A functionf = h + g is in clcoTH(m, α) if and only iff
can be expressed in the form (2.1), where

hm(z) = zm, hn+m−1(z) = zm− m(1− α)

n− 1 + m(1− α)
zn+m−1, (n = 2, 3, . . . ),

gn+m−1(z) = zm +
m(1− α)

n− 1 + m(1 + α)
zn+m−1, (n = 1, 2, 3, . . . )
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and
∞∑

n=1

(λn+m−1 + µn+m−1) = 1, λn+m−1 ≥ 0, µn+m−1 ≥ 0.

Our next result provides distortion bounds for the functions inFm({cn+m−1},
{dn+m−1}).

Theorem 2.3.Let{cn+m−1} and{dn+m−1} be increasing sequences of positive
real numbers so that

cm+1 ≤ dm+1, (n + m− 1) ≤ cn+m−1 and (n + m− 1) ≤ dn+m−1

for all n ≥ 2. If f ∈ Fm({cn+m−1}, {dn+m−1}), then

(1− |bm|)rm −
(

m− dm|bm|
cm+1

)
rm+1

≤ |f(z)| ≤ (1 + |bm|)rm +

(
m− dm|bm|

cm+1

)
rm+1.

The bounds given above are sharp for the functions

f(z) = zm ± |bm|z̄m +

(
m− dm|bm|

cm+1

)
z̄m+1, dm|bm| < 1.

Proof. Let f ∈ Fm({cn+m−1}, {dn+m−1}). Taking the absolute value off , we
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obtain

|f (z) | =

∣∣∣∣∣zm −
∞∑

n=2

|an+m−1|zn+m−1 +
∞∑

n=1

|bn+m−1|z̄n+m−1

∣∣∣∣∣
≤ rm +

∞∑
n=2

|an+m−1|rn+m−1 +
∞∑

n=1

|bn+m−1|rn+m−1

= (1 + |bm|)rm +
∞∑

n=2

(|an+m−1|+ |bn+m−1|)rn+m−1

≤ (1 + |bm|)rm +
1

cm+1

∞∑
n=2

cm+1(|an+m−1|+ |bn+m−1|)rm+1

≤ (1 + |bm|)rm +
1

cm+1

∞∑
n=2

(cm+1|an+m−1|+ dm+1|bn+m−1|)rm+1

≤ (1 + |bm|)rm +
1

cm+1

∞∑
n=2

(cn+m−1|an+m−1|+ dn+m−1|bn+m−1|)rm+1

≤ (1 + |bm|)rm +
1

cm+1

(m− dm|bm|)rm+1.

We omit the proof of the left side of the inequality as it is similar to that of the
right side.

Corollary 2.4. If f ∈ TH(m, α), then

|f(z)| ≤ (1 + |bm|)rm +
m(1− α− (1 + α)|bm|)

1 + m(1− α)
rm+1,
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and

|f(z)| ≥ (1− |bm|)rm − m(1− α− (1 + α)|bm|)
1 + m(1− α)

rm+1,

where|z| = r < 1.

The following covering result follows from the left hand inequality in Theo-
rem2.3.

Corollary 2.5. Letf be as in Theorem2.3. Then{
w : |w| < 1

cm+1

(cm+1 −m− (cm+1 − dm)|bm|)
}
⊂ f(U).

Corollary 2.6. If f ∈ TH(m, α), then{
w : |w| < 1 + (2mα− 1)|bm|

1 + m(1− α)

}
⊂ f(U).

Remark 1. For α = 0, the corresponding results in Corollary2.4and Corollary
2.6were also found in [1].

In the next result, we find the convex combinations of the members of the
family Fm({cn+m−1}, {dn+m−1}).

Theorem 2.7. If (n + m − 1) ≤ cn+m−1 and (n + m − 1) ≤ dn+m−1 for
all n + m − 1 ≥ 2, thenFm({cn+m−1}, {dn+m−1}) is closed under convex
combinations.
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Proof. Consider

fi(z) = zm −
∞∑

n=2

|ain+m−1|zn+m−1 +
∞∑

n=1

|bin+m−1|z̄n+m−1

for i = 1, 2, . . . . If fi ∈ Fm({cn+m−1}, {dn+m−1}) then

(2.2)
∞∑

n=2

cn+m−1|ain+m−1 |+
∞∑

n=1

dn+m−1|bin+m−1| ≤ m, i = 1, 2, . . . .

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, we have

∞∑
i=1

tifi(z)

= zm −
∞∑

n=2

(
∞∑
i=1

ti|ain+m−1|

)
zn+m−1 +

∞∑
n=1

(
∞∑
i=1

ti|bin+m−1|

)
z̄n+m−1.

In view of the above equality and (2.2), we obtain
∞∑

n=2

cn+m−1

∣∣∣∣∣
∞∑
i=1

ti

∣∣∣∣∣ ∣∣ain+m−1

∣∣+ ∞∑
n=1

dn+m−1

∣∣∣∣∣
∞∑
i=1

ti

∣∣∣∣∣ |bin+m−1|

=
∞∑
i=1

ti

{
∞∑

n=2

cn+m−1|ain+m−1 |+
∞∑

n=1

dn+m−1|bin+m−1|

}

≤
∞∑
i=1

tim = m.

Hence
∑∞

i=1 tifi ∈ Fm({cn+m−1}, {dn+m−1}), by an application of (1.6).
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In view of relations (1.7) to (1.10), we have the following results:

Corollary 2.8. The familyTH(m, α), KH(m, α), TH(m) and KH(m) are
closed under convex combinations.

For harmonic functions

(2.3) f (z) = zm −
∞∑

n=2

|an+m−1|zn+m−1 +
∞∑

n=1

|bn+m−1|z̄n+m−1

and

(2.4) F (z) = zm −
∞∑

n=2

|An+m−1|zn+m−1 +
∞∑

n=1

|Bn+m−1|z̄n+m−1

define the integral convolution off andF as

(2.5) (f � F ) (z) = zm −
∞∑

n=2

|an+m−1An+m−1|
n + m− 1

zn+m−1

+
∞∑

n=1

|bn+m−1Bn+m−1|
n + m− 1

z̄n+m−1.

In the following result, we show the integral convolution property of the class
Fm({cn+m−1}, {dn+m−1}).

Theorem 2.9. Let (n + m − 1) ≤ cn+m−1 and(n + m − 1) ≤ dn+m−1 for all
n + m− 1 ≥ 2. If f andF are inFm({cn+m−1}, {dn+m−1}), then so isf � F .

http://jipam.vu.edu.au/
mailto:
mailto:ozlemg@dicle.edu.tr
mailto:
mailto:oahuja@kent.edu
http://jipam.vu.edu.au/


Inequalities Involving
Multipliers For Multivalent

Harmonic Functions

H. Özlem Güney and Om P. Ahuja

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 21

J. Ineq. Pure and Appl. Math. 7(5) Art. 190, 2006

http://jipam.vu.edu.au

Proof. SinceFm({cn+m−1}, {dn+m−1}) ⊂ TH(m) andF ∈ Fm({cn+m−1},
{dn+m−1}), it follows that |An+m−1| ≤ 1 and |Bn+m−1| ≤ 1. Thenf � F ∈
Fm({cn+m−1}, {dn+m−1}) because

∞∑
n=2

cn+m−1

m(n + m− 1)
|an+m−1An+m−1|+

∞∑
n=1

dn+m−1

m(n + m− 1)
|bn+m−1Bn+m−1|

≤
∞∑

n=2

cn+m−1

m(n + m− 1)
|an+m−1|+

∞∑
n=1

dn+m−1

m(n + m− 1)
|bn+m−1|

≤
∞∑

n=2

cn+m−1

m
|an+m−1|+

∞∑
n=1

dn+m−1

m
|bn+m−1| ≤ 2.

Corollary 2.10. If f andF are inTH(m, α), KH(m,α), TH(m) andKH(m),
then so isf � F .

Theδ−neighborhoodof the functionsf = h+ḡ in Fm({(n+m−1)cn+m−1},
{(n + m− 1)dn+m−1}) is defined as the setNδ(f) consisting of functions

F (z) = zm + Bmz̄m +
∞∑

n=2

(An+m−1z
n+m−1 + Bn+m−1z̄

n+m−1)

such that
∞∑

n=2

[(n + m− 1)(|an+m−1 − An+m−1|+ |bn+m−1 −Bn+m−1|)]

+ m|bm −Bm| ≤ δ, δ > 0.
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Our next result guarantees that the functions in a neighborhood of

Fm({(n + m− 1)cn+m−1}, {(n + m− 1)dn+m−1})

are multivalent harmonic starlike functions.

Theorem 2.11.Let {cn+m−1} and {dn+m−1} be increasing sequences of real
numbers so thatcm+1 ≤ dm+1, (n + m − 1) ≤ cn+m−1 and (n + m − 1) ≤
dn+m−1 for all n ≥ 2. If

δ =
m

cm+1

(cm+1 − 1− (cm+1 − dm)|bm|),

then

Nδ(Fm({(n + m− 1)cn+m−1}, {(n + m− 1)dn+m−1})) ⊂ TH(m).

Proof. Suppose

f = h + ḡ ∈ Fm({(n + m− 1)cn+m−1}, {(n + m− 1)dn+m−1}).

Let F = H + Ḡ ∈ Nδ(f) where

H(z) = zm +
∞∑

n=2

An+m−1z
n+m−1 and G(z) =

∞∑
n=1

Bn+m−1z
n+m−1.

We need to show thatF ∈ TH(m). It suffices to show thatF satisfies the
condition

M(F ) :=
∞∑

n=2

(n + m− 1)(|An+m−1|+ |Bn+m−1|) + m|Bm| ≤ m
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Note that

M(F ) ≤
∞∑

n=2

(n + m− 1)[|An+m−1 − an+m−1|+ |Bn+m−1 − bn+m−1|]

+ m|Bm − bm|+
∞∑

n=2

(n + m− 1)(|an+m−1|+ |bn+m−1|) + m|bm|

≤ δ + m|bm|+
∞∑

n=2

(n + m− 1)(|an+m−1|+ |bn+m−1|)

= δ + m|bm|+
1

cm+1

∞∑
n=2

(
cm+1(n + m− 1)|an+m−1|

+ cm+1(n + m− 1)|bn+m−1|
)

≤ δ + m|bm|+
1

cm+1

∞∑
n=2

(
(n + m− 1)cn+m−1|an+m−1|

+ (n + m− 1)dn+m−1|bn+m−1|
)

≤ δ + m|bm|+
1

cm+1

(m(1− dm|bm|)).

But, the last expression is never greater thanm provided that

δ ≤ m−m|bm| −
1

cm+1

(m(1− dm|bm|))

=
m

cm+1

(cm+1 − 1− (cm+1 − dm)|bm|).

http://jipam.vu.edu.au/
mailto:
mailto:ozlemg@dicle.edu.tr
mailto:
mailto:oahuja@kent.edu
http://jipam.vu.edu.au/


Inequalities Involving
Multipliers For Multivalent

Harmonic Functions

H. Özlem Güney and Om P. Ahuja

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 19 of 21

J. Ineq. Pure and Appl. Math. 7(5) Art. 190, 2006

http://jipam.vu.edu.au

Corollary 2.12. If

δ =
m− (m− 2m2α)|bm|

1 + m(1− α)
,

thenNδ(KH(m,α)) ⊂ TH(m).

Letting α = 0 andm = 1, Corollary 2.12yields the following interesting
result.

Corollary 2.13. N 1
2
(1−|b1|)(KH) ⊂ TH.
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