TWO-DIMENSIONAL SUNOUCHI OPERATOR WITH RESPECT TO VILENKIN-LIKE SYSTEMS

CHUANZHOU ZHANG AND XUEYING ZHANG
College of Science
Wuhan University of Science and Technology
Wuhan, 430065, China
EMail: zczwust@163.com zhxying315@sohu.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

Acknowledgements:

05 May, 2007
19 October, 2008
S.S. Dragomir

42 C 10 .
Sunouchi operator, Vilenkin-like systems.
In this paper two-dimensional Vilenkin-like systems will be investigated. We prove the Sunouchi operator is bounded from H^{q} to L^{q} for $(2 / 3<q \leq 1)$. As a consequence, we prove the Sunouchi operator is L^{s} bounded for $1<s<\infty$ and of weak type (H^{\natural}, L^{1}).

Supported by Foundation of Hubei Scientific Committee under grant No.B20081102.
The author thanks the referees for their helpful advice.

Sunouchi Operator
Chuanzhou Zhang and
Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

44

4
Page 1 of 19
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction 3
2 Preliminaries and Notations

Sunouchi Operator Chuanzhou Zhang and Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents
44

Page 2 of 19
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

The operator U (called the Sunouchi operator) was first introduced and investigated by Sunouchi [1], [2] in Walsh-Fourier analysis.He showed a characterization for the L^{p} spaces for $p>1$ by means of U, since this characterization fails to hold for $p=1$. It was of interest to investigate the boundedness of U on a Hardy space. In [3] Simon showed that U is a sublinear bounded map from the dyadic Hardy space H^{1} into L^{1}.

The Vilenkin analogue of the Sunouchi operator was given by Gát [4], [5]. He investigated the boundedness of U from (Vilenkin) H^{1} into L^{1} and proved that if a Vilenkin group has an unbounded structure and H^{1} is defined by means of the usual maximal function, then U is not bounded. Furthermore, when they considered a modified H^{1} space (introduced by Simon [6]), then a necessary and sufficient condition could be given for a Vilenkin group that $U: H^{1} \rightarrow L^{1}$ be bounded. All Vilenkin groups with bounded structure and certain groups without this boundedness property satisfy the condition given by Gát. Thus, in the so-called bounded case, the (H^{1}, L^{1}) -boundedness of U remains true also for Vilenkin system. In [7] Simon extended this result, by showing the $\left(H^{q}, L^{q}\right)$-boundedness of U for all $0<q \leq 1$. Moreover, the equivalence

$$
\|f\|_{H^{q}} \sim\|U f\|_{q} \quad\left(\frac{1}{2}<q \leq 1\right)
$$

was also obtained for f with mean value zero.
In this paper we consider a two-dimensional case with respect to generalized Vilenkin-like systems.

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 3 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Preliminaries and Notations

In this section, we introduce important definitions and notations. Furthermore, we formulate some known results with respect to Vilenkin-like systems, which play a basic role in further investigations. For details, see [8] by Vilenkin and [9] by Schipp, Wade, Simon and Pál.

Let $m:=\left(m_{k}, k \in \mathbb{N}\right)(\mathbb{N}:=\{0,1, \ldots\}$,$) be a sequence of integers, each of$ them not less than 2 . Denote by $Z_{m_{k}}$ the m_{k}-th cyclic group $(k \in \mathbb{N})$. That is, $Z_{m_{k}}$ can be represented by the set $\left\{0,1, \ldots, m_{k}-1\right\}$, where the group operator is the $\bmod m_{k}$ addition and every subset is open. The Harr measure on $Z_{m_{k}}$ is given such that $\mu(\{j\})=\frac{1}{m_{k}}\left(j \in Z_{m_{k}}, k \in \mathbb{N}\right)$.

Let G_{m} denote the complete direct product of $Z_{m_{k}}$'s equipped with product topology and product measure μ, then G_{m} forms a compact Abelian group with Haar measure 1. The elements of G_{m} are sequences of the form $\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$, where $x_{k} \in Z_{m_{k}}$ for every $k \in \mathbb{N}$ and the topology of the group G_{m} is completely determined by the sets

$$
I_{n}(0):=\left\{\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right) \in G_{m}: x_{k}=0(k=0, \ldots, n-1)\right\}
$$

$\left(I_{0}(0):=G_{m}\right)$. Let $I_{n}(x):=I_{n}(0)+x(n \in \mathbb{N}) ; M_{0}:=1$ and $M_{k+1}:=m_{k} M_{k}$ for $k \in \mathbb{N}$, the so-called generalized powers. Then every $n \in \mathbb{N}$ can be uniquely expressed as $n=\sum_{k=0}^{\infty} n_{k} M_{k}, 0 \leq n_{k}<m_{k}, n_{k} \in \mathbb{N}$. The sequence $\left(n_{0}, n_{1}, \ldots\right)$ is called the expansion of n with respect to m. We often use the following notations: $|n|:=\max \left\{k \in \mathbb{N}: n_{k} \neq 0\right\}$ (that is, $\left.M_{|n|} \leq n<M_{|n|+1}\right)$ and $n^{(k)}=\sum_{j=k}^{\infty} n_{j} M_{j}$.

Let $\hat{G}_{m}:=\left\{\psi_{n}: n \in \mathbb{N}\right\}$ denote the character group of G_{m}. We enumerate the elements of \hat{G}_{m} as follows. For $k \in \mathbb{N}$ and $x \in G_{m}$ denote by r_{k} the k-th generalized Rademacher function:

$$
r_{k}(x):=\exp \left(2 \psi r \frac{x_{k}}{m_{k}}\right) \quad\left(x \in G_{m}, \imath: \sqrt{-1}, k \in \mathbb{N}\right)
$$

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 4 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

It is known for $x \in G_{m}, n \in \mathbb{N}$ that

$$
\sum_{i=0}^{m_{n}-1} r_{n}^{i}(x)= \begin{cases}0, & \text { if } x_{n} \neq 0 \tag{2.1}\\ m_{n}, & \text { if } x_{n}=0\end{cases}
$$

Now we define the ψ_{n} by

$$
\psi_{n}:=\prod_{k=0}^{\infty} r_{k}^{n_{k}} \quad(n \in \mathbb{N})
$$

\hat{G}_{m} is a complete orthonormal system with respect to μ.
G. Gát introduced the so-called Vilenkin-like (or $\psi \alpha$) system. Let functions $\alpha_{n}, \alpha_{j}^{k}: G_{m} \rightarrow \mathcal{C}(n, j, k \in \mathbb{N})$ satisfy:
i) α_{j}^{k} is measurable with respect to Σ_{j} (i.e. α_{j}^{k} depends only on $x_{0}, x_{1}, \ldots, x_{j-1}$, $j, k \in \mathbb{N}$);
ii) $\left|\alpha_{j}^{k}\right|=\alpha_{j}^{k}(0)=\alpha_{0}^{k}=\alpha_{j}^{0}=1(j, k \in \mathbb{N})$;
iii) $\alpha_{n}:=\prod_{j=0}^{\infty} \alpha_{j}^{n^{(j)}} \quad(n \in \mathbb{N})$.

Let $\chi_{n}:=\psi_{n} \alpha_{n}(n \in \mathbb{N})$. The system $\chi:=\left\{\chi_{n}: n \in \mathbb{N}\right\}$ is called a Vilenkinlike (or $\psi \alpha$) system (see [10] and [13] for examples).

1. If $\alpha_{j}^{k}=1$ for each $k, j \in \mathbb{N}$, then we have the "ordinary" Vilenkin systems.
2. If $m_{j}=2$ for all $j \in \mathbb{N}$ and $\alpha_{j}^{n^{(j)}}=\left(\beta_{j}\right)^{n_{j}}$, where

$$
\beta_{j}(x)=\exp \left(2 \pi \iota\left(\frac{x_{j-1}}{2^{2}}+\cdots+\frac{x_{0}}{2^{j+1}}\right)\right) \quad\left(n, j \in \mathbb{N}, x \in G_{m}\right)
$$

then we have the character system of the group of 2-adic integers.

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 5 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
3. If

$$
\chi_{n}(x):=\exp \left(2 \pi \iota\left(\sum_{j=0}^{\infty} \frac{n_{j}}{M_{j+1}} \sum_{j=0}^{\infty} x_{j} M_{j}\right)\right) \quad\left(x \in G_{m}, n \in \mathbb{N}\right)
$$

then we have a Vilenklin-like system which is useful in the approximation of limit periodic almost even arithmetical functions.

In [10] Gát proved that a Vilenkin-like system is orthonormal and complete in $L^{1}\left(G_{m}\right)$. Define the Fourier coefficients, the Dirichlet kernels, and Fejér kernels with respect to the Vilenkin-like system χ as follows:

$$
\begin{aligned}
\hat{f}^{\chi}(n) & =\hat{f}(n):=\int_{G_{m}} f \bar{\chi}_{n}, \quad \hat{f}^{\chi}(0):=\int_{G_{m}} f \quad\left(f \in L^{1}\left(G_{m}\right)\right) ; \\
D_{n}^{\chi}(y, x) & =D_{n}(y, x):=\sum_{k=0}^{n-1} \chi_{n}(y) \bar{\chi}_{n}(x) ; \\
K_{n}^{\chi}(y, x) & =K_{n}(y, x):=\frac{1}{n} \sum_{k=0}^{n-1} D_{n}^{\chi}(y, x) ; \\
K_{h, H}^{\chi}(y, x) & =K_{h, H}(y, x):=\sum_{j=h}^{h+H-1} D_{j}^{\chi}(y, x),
\end{aligned}
$$

vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 6 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Moreover,

$$
\begin{aligned}
D_{n}^{\chi}(y, x) & =\alpha_{n}(y) \bar{\alpha}_{n}(x) D_{n}^{\psi}(y-x) \\
& =\chi_{n}(y) \bar{\chi}_{n}(x)\left(\sum_{j=0}^{\infty} D_{M_{j}}(y-x) \sum_{k=m_{j}-n_{j}}^{m_{j}-1} r_{j}^{k}(y-x)\right) \\
& \left(n \in \mathbb{P}:=\mathbb{N} \backslash\{0\}, y, x \in G_{m}\right),
\end{aligned}
$$

where the system ψ is the "ordinary" Vilenkin system.
If $\tilde{m}=\left(\tilde{m}_{n}, n \in \mathbb{N}\right)$ is also a generating sequence then we consider the Vilenkin $\operatorname{group} G_{\tilde{m}}$ as well. We write \tilde{M}_{n} instead of M_{n}. Let $G:=G_{m} \times G_{\tilde{m}}$ and

$$
\chi_{k, l}(x, y)=\chi_{k}(x) \chi_{l}(y) \quad\left(k, l \in \mathbb{N}, x \in G_{m}, y \in G_{\tilde{m}}\right)
$$

be the two-parameter Vilenkin groups and Vilenkin systems, respectively.
The symbol $L^{p}(0<p \leq \infty)$ will denote the usual Lebesgue space of complexvalued functions f defined on G with the norm (or quasinorm)

$$
\|f\|_{p}:=\left(\int_{G}|f|^{p}\right)^{\frac{1}{p}} \quad(0<p<\infty), \quad\|f\|_{\infty}:=\text { ess sup }|f|
$$

If $f \in L^{1}$, then $\hat{f}(k, l):=\int_{G} f \overline{\chi_{k, l}}(k, L \in \mathbb{N})$ is the usual Fourier coefficient of f. Let $S_{n, l} f(n, l \in \mathbb{N})$ be the (n, l)-th rectangular partial sum of f :

$$
S_{n, l} f:=\sum_{k=0}^{n-1} \sum_{j=0}^{l-1} \hat{f}(k, j) \chi_{k, j} .
$$

The so-called (martingale) maximal function of f is given by

$$
f^{*}(x, y)=\sup _{n, l} M_{n} \tilde{M}_{l}\left|\int_{I_{n}(x)} \int_{I_{l}(y)} f\right| \quad\left(x \in G_{m}, y \in G_{\tilde{m}}\right)
$$

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 7 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Furthermore, let f^{\natural} be the hybrid maximal function of f defined by

$$
f^{\natural}(x, y):=\sup _{n} M_{n}\left|\int_{I_{n}(x)} f(t, y) d t\right| \quad\left(x \in G_{m}, y \in G_{\tilde{m}}\right) .
$$

Define the Hardy space $H^{p}\left(G_{m} \times G_{\tilde{m}}\right)$ for $0<p<\infty$ as the space of functions f for which

$$
\|f\|_{H^{p}}:=\left\|f^{*}\right\|_{p}<\infty
$$

Then $\|f\|_{H^{p}}$ is equivalent to $\|Q f\|_{p}$, where $Q f$ is the quadratic variation of f :

$$
\begin{aligned}
Q f: & =\left(\sum_{n=0}^{\infty} \sum_{l=0}^{\infty}\left|\Delta_{n, l} f\right|^{2}\right)^{\frac{1}{2}} \\
:= & \left(\sum_{n=0}^{\infty} \sum_{l=0}^{\infty}\left|S_{M_{n}, \tilde{M}_{l}} f-S_{M_{n}, \tilde{M}_{l-1}} f-S_{M_{n-1}, \tilde{M}_{l}} f+S_{M_{n-1}, \tilde{M}_{l-1}} f\right|^{2}\right)^{\frac{1}{2}} \\
& S_{M_{n}, \tilde{M}_{-1}} f:=S_{M_{-1}, \tilde{M}_{l}} f:=S_{M_{-1}, \tilde{M}_{-1}} f:=0 \quad(n, l \in \mathbb{N}) .
\end{aligned}
$$

Let H^{\natural} be the set of functions f such that

$$
\|f\|_{H^{\natural}}:=\left\|f^{\natural}\right\|_{1}<\infty .
$$

In [11] Weisz defined the two-dimensional Sunouchi operator as follows:

$$
U f:=\left(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty}\left|S_{2^{n}, 2^{m}} f-S_{2^{n}} \sigma_{2^{m}} f-\sigma_{2^{n}} S_{2^{m}} f+\sigma_{2^{n}} \sigma_{2^{m}} f\right|^{2}\right)^{\frac{1}{2}}
$$

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents
4

Page 8 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where σf is the Cesàro means of the Walsh Fourier series of $f \in L^{1}$. Now we extend the definition to the two-dimensional Vilenkin-like systems as follows:

$$
U f:=\left(\sum_{n=0}^{\infty} \sum_{s=0}^{\infty}\left|\sum_{j=1}^{M_{n+1}-1} \sum_{k=1}^{\tilde{M}_{s+1}-1} \frac{j k}{M_{n+1} \tilde{M}_{s+1}} \hat{f}(j, k) \chi_{j, k}\right|^{2}\right)^{\frac{1}{2}} \quad\left(f \in L^{1}\right) .
$$

If $\alpha=\left(\alpha_{n}, n \in \mathbb{N}\right), \beta=\left(\beta_{n}, n \in \mathbb{N}\right)$ are bounded sequences of complex numbers, then let

$$
T_{\alpha, \beta} f:=\sup _{n, l} \sum_{i=0}^{M_{n}-1} \sum_{j=0}^{\tilde{M}_{l}-1} \alpha_{n} \beta_{k} \hat{f}(n, k) \chi_{n, k}
$$

be defined at least on L^{2}.
Moreover, let $\alpha_{j}:=j M_{l}^{-1}\left(l \in \mathbb{N}, j=M_{l}, \ldots, M_{l+1}-1\right)$ and $\beta_{k}:=k \tilde{M}_{t}^{-1}$ $\left(t \in \mathbb{N}, k=\tilde{M}_{t}, \ldots, \tilde{M}_{t+1}-1\right)$ then

$$
U f=\left(\sum_{n=0}^{\infty} \sum_{s=0}^{\infty}\left|\sum_{l=0}^{n} \sum_{t=0}^{s} M_{l} \tilde{M}_{t} \Delta_{l+1, t+1}\left(T_{\alpha, \beta} f\right)\right|^{2}\right)^{\frac{1}{2}}
$$

In this paper we assume the sequences m, \tilde{m} are bounded. In the investigations of some operators defined on Hardy spaces, the concept of a q-atom is very useful. The function a is called a q-atom if either a is identically equal to 1 or there exist intervals $I_{n}(\tau) \subset G_{m}, I_{L}(\gamma) \subset G_{\tilde{m}}\left(N, L \in \mathbb{N}, \tau \in G_{m}, \gamma \in G_{\tilde{m}}\right)$ such that

$$
\begin{aligned}
& \text { i) } \quad a(x, y)=0 \text { if }(x, y) \in G \backslash\left(I_{N}(\tau) \times I_{L}(\gamma)\right), \\
& \text { ii) }\|a\|_{2} \leq \mu\left(I_{N}(\tau) \times I_{L}(\gamma)\right)^{\frac{1}{2}-\frac{1}{q}} \\
& \text { iii) } \quad \int_{G_{m}} a(t, y) d t=\int_{G_{\tilde{m}}} a(x, u) d u=0 \text { if } x \in G_{m}, y \in G_{\tilde{m}} .
\end{aligned}
$$

J
m

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 9 of 19

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.1 ([1]). Let T be an operator defined at least on L_{2} and assume that T is L_{2} bounded. If there exists $\delta>0$ such that for all q-atoms a with support $I_{N}(\tau) \times I_{L}(\gamma)$ and for all $r \in \mathbb{N}$, we have

$$
\int_{G \backslash I_{N-r}(\tau) \times I_{L-r}(\gamma)}|T a|^{q} \leq C_{q} 2^{-\delta r}
$$

then T is bounded from H_{q} to L_{q} for all $0<q \leq 1$.
Lemma 2.2. Let $\frac{2}{3}<q \leq 1$. Then there exist $\delta>0$ and a constant C_{q} depending only on q such that for $N, L, r \in \mathbb{N}$

$$
M_{N}^{1-\frac{q}{2}} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\int_{I_{N}}\left|\sum_{k=M_{n}}^{M_{n+1}-1} \frac{k \chi_{k}(x) \bar{\chi}_{k}(t)}{M_{n}}\right|^{2} d t\right)^{\frac{q}{2}} d x \leq C_{q} 2^{-\delta r}
$$

Proof. For $n \in \mathbb{N}, n \geq N$, we have

$$
\begin{aligned}
M_{n} K_{M_{n}}(x, t) & =\sum_{i=0}^{M_{n}-2} \chi_{i}(x) \bar{\chi}_{i}(t) \sum_{k=i+1}^{M_{n}-1} 1 \\
& =\sum_{i=0}^{M_{n}-2}\left(M_{n}-i-1\right) \chi_{i}(x) \bar{\chi}_{i}(t) \\
& =\left(M_{n}-1\right) D_{M_{n}-1}(x, t)-\sum_{i=0}^{M_{n}-1} i \chi_{i}(x) \bar{\chi}_{i}(t) .
\end{aligned}
$$

This follows

$$
\sum_{i=M_{n}}^{M_{n+1}-1} \frac{i \chi_{i}(x) \bar{\chi}_{i}(t)}{M_{n}}=m_{n}\left(D_{M_{n+1}}(x, t)-K_{M_{n+1}}(x, t)\right)
$$

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents
\square
Page 10 of 19

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
-\left(D_{M_{n}}(x, t)-K_{M_{n}}(x, t)\right)-\frac{D_{M_{n+1}}(x, t)-D_{M_{n}}(x, t)}{M_{n}} .
$$

If $x \in G_{m} \backslash I_{N-r}, t \in I_{N}$, then there exists $u(0 \leq u \leq N-r-1)$ such that $x \in I_{u} \backslash I_{u+1}$. Since $x-t \in I_{u} \backslash I_{u+1}$, we have $D_{M_{k}}(x, t)=0$ for all $(k \geq u+1)$. Suppose that $s>u$. From the definitions of the function α_{n} and the Fejér kernel, we have, if $x \in I_{u}(t) \backslash I_{u+1}(t)$,

$$
\begin{aligned}
K_{n^{(s)}, M_{s}}(x, t)= & \sum_{k=n^{(s)}}^{n^{(s)}+M_{s}-1}\left(\sum_{j=0}^{u-1} k_{j} M_{j}\right) \chi_{k}(x) \bar{\chi}_{k}(t) \\
& +\sum_{k=n^{(s)}}^{n^{(s)}+M_{s}-1} M_{u} \sum_{p=m_{u}-k_{u}}^{m_{u}-1} r_{t}^{p}(x-t) \chi_{k}(x) \bar{\chi}_{k}(t) \\
= & \sum^{1}+\sum^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& \sum^{1}=\sum_{k_{s-1}=0}^{m_{s-1}-1} \cdots \sum_{k_{u+1}=0}^{m_{u+1}-1} \sum_{k_{u-1}=0}^{m_{u-1}-1} \cdots \sum_{k_{0}=0}^{m_{0}-1}\left(\sum_{j=0}^{t-1} k_{j} M_{j}\right) \\
& \cdot \prod_{l=u+1}^{\infty} r_{l}^{k_{l}}(x-t) \alpha_{l}^{k^{(l)}}(x) \bar{\alpha}_{l}^{k^{(l)}}(t) \sum_{k_{u}=0}^{m_{u}-1} r_{u}^{k_{u}}(x-t) \\
&= \sum_{k_{u}=0}^{m_{u}-1} r_{u}^{k_{u}}(x-t) \phi(x, t),
\end{aligned}
$$

and the function ϕ does not depend on k_{t}. Consequently, $\sum^{1}=0$ (see [12]).

J

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents
\square
Page 11 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since the sequence m is bounded, we have

$$
\begin{aligned}
\int_{I_{N}}\left|\sum^{2}\right|^{2} d t & \leq C M_{u}^{2} \sum_{p=0}^{m_{u}-1} \int_{I_{N}} \sum_{k, l=0 ; k_{u}=m_{u}=p}^{M_{s}-1} \chi_{n^{(s)+k}}(t) \bar{\chi}_{n^{(s)}+l}(t) \bar{\chi}_{n^{(s)}+k}(x) \chi_{n^{(s)}+l}(x) d t \\
& \leq C M_{u}^{2} \frac{1}{M_{N}} M_{s} M_{u} .
\end{aligned}
$$

Recall that $k^{(u+1)} \neq l^{(u+1)}$ implies

$$
\int_{I_{N}} \chi_{n^{s}+k}(x) \bar{\chi}_{n^{(s)}+l}(x) d x=0 .
$$

If $s \leq u$, then $\left|K_{n^{(s)}, M_{s}}(x, t)\right| \leq C M_{u} M_{s}$. Then
Title Page
Contents

$$
\begin{aligned}
& M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\int_{I_{N}}\left|\sum_{k=M_{n}}^{M_{n+1}-1} \frac{k \chi_{k}(x) \bar{\chi}_{i}(t)}{M_{n}}\right|^{2} d t\right)^{\frac{q}{2}} d x \\
& \leq M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\int _ { I _ { N } } C \left(\left|D_{M_{n+1}}(x, t)-K_{M_{n+1}}(x, t)\right|^{2}\right.\right.
\end{aligned}
$$

$$
\left.+\left[\left|D_{M_{n}}(x, t)-K_{M_{n}}(x, t)\right|+\left|\frac{D_{M_{n+1}}(x, t)-D_{M_{n}}(x, t)}{M_{n}}\right|\right]^{2} d t\right)^{\frac{q}{2}} d x
$$

$$
=M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\int_{I_{N}} C\left(\left|K_{M_{n+1}}(x, t)\right|^{2}+\left|K_{M_{n}}(x, t)\right|^{2}\right) d t\right)^{\frac{q}{2}} d x
$$

4

Page 12 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \leq C_{q} M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \sum_{u=0}^{N-r-1} \frac{1}{M_{n+1}} \sum_{s=0}^{n+1} \sum_{j=0}^{n_{s}-1} \int_{I_{u} \backslash I_{u+1}}\left(\int_{I_{N}}\left|K_{n}(s+1)+j M_{s}, M_{s}(x, t)\right|^{2} d t\right)^{\frac{q}{2}} d x \\
& +C_{q} M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \sum_{u=0}^{N-r-1} \frac{1}{M_{n}} \sum_{s=0}^{n} \sum_{j=0}^{n_{s}-1} \int_{I_{u} \backslash I_{u+1}}\left(\int_{I_{N}}\left|K_{n(s+1)}+j M_{s}, M_{s}(x, t)\right|^{2} d t\right)^{\frac{q}{2}} d x \\
& \leq C_{q} M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \sum_{u=0}^{N-r-1} \frac{1}{M_{n+1}} \sum_{s=0}^{n+1} \sum_{j=0}^{n_{s}-1} \int_{I_{u} \backslash I_{u+1}}\left(\frac{M_{u}^{3} M_{s}}{M_{N}}\right)^{\frac{q}{2}} d x \\
& +C_{q} M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \sum_{u=0}^{N-r-1} \frac{1}{M_{n}} \sum_{s=0}^{n} \sum_{j=0}^{n_{s}-1} \int_{I_{u} \backslash I_{u+1}}\left(\frac{M_{u}^{3} M_{s}}{M_{N}}\right)^{\frac{q}{2}} d x \\
& \leq C_{q} M_{N}^{1-q / 2} \sum_{n=N+1}^{\infty} \sum_{u=0}^{N-r-1} M_{u}^{3 q / 2-1} M_{n}^{-q / 2} M_{N}^{-q / 2} \\
& \leq C_{q} M_{N}^{1-q / 2} M_{N-r-1}^{3 q / 2-1} M_{N}^{-q}=C_{q}\left(m_{N-r} \cdot m_{N-1}\right)^{-(3 q / 2-1)} \leq C_{q} 2^{-\delta r} \\
& (\delta=3 q / 2-1>0)
\end{aligned}
$$

Title Page
Contents

Page 13 of 19

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

This last property implies that

$$
\hat{a}(i, j)=0 \text { if } i=0, \ldots, M_{N}-1 \text { or } j=0, \ldots, \tilde{M}_{L}-1
$$

Let α and β as above. Then from the Cauchy inequality we have

$$
\begin{align*}
& T_{\alpha, \beta} a(x, y) \\
& \left.\leq \sum_{n=N+1}^{\infty} \sum_{j=L+1}^{\infty} \iint_{I_{N}}|a(t, u)| \sum_{k=M_{n}}^{M_{n+1}-1} \frac{k}{M_{n}} \chi_{k}(x) \bar{\chi}_{k}(t) \sum_{l=M_{j}}^{M_{j+1}-1} \frac{l}{M_{j}} \chi_{l}(y) \bar{\chi}_{l}(u) \right\rvert\, d t d u \\
& \leq\|a\|_{2} \sum_{n=N+1}^{\infty} \sum_{j=L+1}^{\infty}\left(\iint_{J_{N}}\left|\sum_{k=M_{n}}^{M_{n+1}-1} \frac{k}{M_{n}} \chi_{k}(x) \bar{\chi}_{i}(t) \sum_{l=M_{j}}^{M_{j+1}-1} \frac{l}{M_{j}} \chi_{l}(y) \bar{\chi}_{l}(u)\right|^{2} d t d u\right)^{\frac{1}{2}} . \tag{2.3}
\end{align*}
$$

First we will show $T_{\alpha, \beta}$ is q-quasi local. Let $r \in \mathbb{N}$ and define the sets $X_{i}(i=$ $1,2,3,4)$ as follows:

$$
\begin{array}{ll}
X_{1}:=\left(G_{m} \backslash I_{N-r}\right) \times I_{L}, & X_{2}:=\left(G_{m} \backslash I_{N-r}\right) \times\left(G_{\tilde{m}} \backslash I_{L}\right), \\
X_{3}:=I_{N} \times\left(G_{\tilde{m}} \backslash I_{L-r}\right), & X_{4}:=\left(G_{m} \backslash I_{N}\right) \times\left(G_{\tilde{m}} \backslash I_{L-r}\right) .
\end{array}
$$

It is clear that

$$
\int_{\left(G \backslash I_{N-r} \times I_{L-r}\right)}\left(T_{\alpha, \beta} a\right)^{q} \leq \sum_{i=1}^{4} \int_{X_{i}}\left(T_{\alpha, \beta} a\right)^{q}
$$

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 14 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \left.\left.\times \sup \int_{I_{L}} a(t, u) \sum_{j=L+1}^{l} \sum_{l=M_{j}}^{M_{j+1}-1} \frac{l}{M_{j}} \chi_{l}(y) \bar{\chi}_{l}(u)|d u| d t\right)^{2} d y\right)^{\frac{q}{2}} d x \\
& \leq\left|I_{L}\right|^{1-q / 2} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\int_{I_{N}}\left|\sum_{k=M_{n}}^{M_{n+1}-1} \frac{k}{M_{n}} \chi_{k}(x) \bar{\chi}_{k}(t)\right|^{2} d t\right)^{\frac{q}{2}} d x \\
& \times\left(\int_{I_{N}} \int_{J_{L}}|a(t, y)|^{2} d y d t\right)^{\frac{q}{2}} .
\end{aligned}
$$

From the definition of q-atoms and Lemma 2.2, we have

$$
\begin{aligned}
& \int_{X_{1}}\left(T_{\alpha, \beta} a\right)^{q}(x, y) d x d y \\
& \leq\|a\|_{2}^{q}\left|I_{L}\right|^{1-\frac{q}{2}} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\int_{I_{N}}\left|\sum_{k=M_{n}}^{M_{n+1}-1} \frac{k \chi_{k}(x) \bar{\chi}_{k}(t)}{M_{n}}\right|^{2} d t\right)^{\frac{q}{2}} d x \\
& \leq C_{q} M_{N}^{1-\frac{q}{2}} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\int_{I_{N}}\left|\sum_{k=M_{n}}^{M_{n+1}-1} \frac{k \chi_{k}(x) \bar{\chi}_{k}(t)}{M_{n}}\right|^{2} d t\right)^{\frac{q}{2}} d x
\end{aligned}
$$

$$
\text { (2.4) } \quad \leq C_{q} 2^{-\delta r}
$$

In a similar way, we have

$$
\begin{equation*}
\int_{X_{3}}\left(T_{\alpha, \beta} a\right)^{q}(x, y) d x d y \leq C_{q} 2^{-\delta r} \tag{2.5}
\end{equation*}
$$

Sunouchi Operator
Chuanzhou Zhang and
Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 15 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

On the set X_{2}, by inequality (2.3) we have

$$
\begin{aligned}
& \int_{X_{3}}\left(T_{\alpha, \beta} a\right)^{q}(x, y) d x d y \\
& \leq\|a\|_{2}^{q} \sum_{n=N+1}^{\infty} \sum_{j=L+1}^{\infty} \int_{G_{m} \backslash I_{N-r}} \int_{G_{\tilde{m}} \backslash I_{l}} \\
& \qquad\left(\left.\iint_{I_{N}} \int_{J_{L}} \sum_{k=M_{n}}^{M_{n+1-1}} \frac{k \chi_{k}(x) \bar{\chi}_{k}(t)}{M_{n}} \sum_{l=M_{j}-1}^{M_{j}-1} \frac{l}{M_{j}} \chi_{l}(y) \bar{\chi}_{l}(u)\right|^{2} d t d u\right)^{\frac{q}{2}} d x d y \\
& \left.\leq\left.\left(M_{N} P_{L}\right)^{1-\frac{q}{2}} \sum_{n=N+1}^{\infty} \sum_{j=L+1}^{\infty} \int_{G_{m} \backslash I_{N-r}} \int_{G_{\tilde{m}} \backslash I_{l}} \int_{J_{L}} \sum_{k=M_{n}}^{M_{n+1}-1} \frac{k \chi_{k}(x) \bar{\chi}_{k}(t)}{M_{n}} \sum_{l=M_{j}}^{M_{j+1}-1} \frac{l}{M_{j}} \chi_{l}(y) \bar{\chi}_{l}(u)\right|^{2} d t d u\right)^{\frac{q}{2}} d x d y \\
& \leq M_{N}^{1-\frac{q}{2}} \sum_{n=N+1}^{\infty} \int_{G_{m} \backslash I_{N-r}}\left(\left.\int_{I_{N}} \sum_{k=M_{n}}^{\sum_{n+1}} \frac{M_{\chi_{k}}(x) \bar{\chi}_{k}(t)}{M_{n}}\right|^{2} d t\right)^{\frac{q}{2}} d x \\
& \left.\leq C_{q} 2^{-\delta r}\left(\tilde{M}_{L}\right)^{1-\frac{q}{2}} \sum_{j=L+1}^{\infty} \int_{G_{\tilde{m}} \backslash J_{L}}\left(\left.\int_{I_{L}}^{\sum_{l=M_{j}}^{M_{j+1}-1}} \frac{l}{M_{j}} \chi_{l}(y) \bar{\chi}_{l}(u)\right|^{2} d u\right)^{\frac{q}{2}} d y\right)^{2} \\
& \leq C_{q} 2^{-\delta r} .
\end{aligned}
$$

An analogous estimate with X_{4} instead of X_{2} can be obtained using a similar ar-

Title Page

Contents

Page 16 of 19

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
gument and these prove that the operator $T_{\alpha, \beta}$ is q-quasi local. By Parseval's equality, it is clear that the operator $T_{\alpha, \beta}$ is L^{2} bounded. Since

$$
U f=\left(\sum_{n=0}^{\infty} \sum_{s=0}^{\infty}\left|\sum_{j=1}^{M_{n+1}-1} \sum_{k=1}^{\tilde{M}_{s+1}-1} \frac{j k}{M_{n+1} \tilde{M}_{s+1}} \hat{f}(j, k) \chi_{j, k}\right|^{2}\right)^{\frac{1}{2}} \leq C Q\left(T_{\alpha, \beta} f\right),
$$

where the operator Q is a two-dimensional quadratic variation of f. By Lemma 2.1, we have

$$
\|U f\|_{q} \leq C_{q}\left\|Q\left(T_{\alpha, \beta} f\right)\right\|_{q} \leq C_{q}\left\|T_{\alpha, \beta} f\right\|_{H_{q}} \leq C_{q}\|f\|_{H_{q}} .
$$

Applying known theorems on the interpolation of operators and a duality argument gives the following:

Theorem 2.4. The operator U is $L^{s} \rightarrow L^{s}$ bounded and of weak type $\left(H^{\natural}, L^{1}\right)$, i.e., there exists a constant C such that for all $\delta>0$ and $f \in H^{\natural}$ we have

$$
\mu\{(x, y) \in G:|U f(x, y)|>\delta\} \leq C \frac{\|f\|_{H^{\natural}}}{\delta}
$$

Title Page
Contents

Page 17 of 19
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] G.-I. SUNOUCHI, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc., 2 (1951), 5-11.
[2] G.-I. SUNOUCHI, Strong summability of Walsh-Fourier series, Tohoku Math. J., 16 (1969), 228-237.
[3] P. SIMON, $\left(L^{1}, H\right)$-type estimations for some operators with respect to the Walsh-Paley system, Acta Math. Hungar., 46 (1985), 307-310.
[4] G. GÁT, Investigation of some operators with respect to Vilenkin systems, Acta Math. Hungar., 61 (1993), 131-144.
[5] G. GÁT, On the lower bound of Sunouchi's operator with respect to Vilenkin system, Analysis Math., 23 (1997), 259-272.
[6] P. SIMON, Investigation with respect to Vilenkin systems, Ann. Univ. Sci. Budapest. Sect. Math., 27 (1982), 87-101.
[7] P. SIMON, A note on the Sunouchi operator with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Sect. Math., 43 (2000), 101-116.
[8] N.Ya. VILENKIN, On a class of complete orthonormal systems, Izd. Akad. Nauk SSSR., 11 (1947), 363-400 (in Russian).
[9] F. SCHIPP, W.R. WADE, P. SIMON, AND J.PÁL, Walsh series, An Introduction to Dyadic Harmonic Analysis, Adam Hilger. Bristol-new York ,1990.
[10] G. GÁT, Orthonormal systems on Vilenkin groups, Acta Mathematica Hungarica, 58(1-2) (1991), 193-198.

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 18 of 19
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] F. WEISZ, The boundedness of the two-parameter Sunouchi operators on Hardy spaces, Acta Math. Hungar., 72 (1996), 121-152.
[12] G. GÁT, Convergence and Summation With Respect to Vilenkin-like Systems in: Recent Developments in Abstract Harmonic Analysis with Applications in Signal Processing, Nauka, Belgrade and Elektronsik Fakultet, Nis, 1996, 137146.
[13] G. GÁT, On $(C, 1)$ summability for Vilenkin-like systems, Studia Math., 144(2) (2001), 101-120.

Sunouchi Operator Chuanzhou Zhang and

Xueying Zhang
vol. 9, iss. 4, art. 110, 2008

Title Page
Contents

Page 19 of 19
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

