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ABSTRACT. The authors investigate several recently posed problems involving the familiar
Mathieu series and its various generalizations. For certain families of generalized Mathieu series,

they derive a number of integral representations and investigate several one-sided inequalities

which are obtainable from some of these general integral representations or from sundry other

considerations. Relevant connections of the results and open problems (which are presented or

considered in this paper) with those in earlier works are also indicated. Finally, a conjectured

generalization of one of the Mathieu series inequalities proven here is posed as an open problem.
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2 H.M. SRIVASTAVA AND ZIVORAD TOMOVSKI

1. INTRODUCTION, DEFINITIONS , AND PRELIMINARIES

The following familiar infinite series:

(1.1) S(r) = Z

n=1
is named after Emile Leonard Mathieu (1835-1890), who investigated it in his 1890 work [13]
on elasticity of solid bodies.
For the Mathieu serieS (r) defined by[(1.]l), Alzeet al. [2] showed that the best constants
r1 andksy in the following two-sided inequality:

2n
—(n2 n 7’2)2 (7“ € ]R+)

1 1
1.2) P < S(r)< P (r #0)
are given by
_ and _!
") v

where( (s) denotes the Riemann Zeta function defined by (see, for details, [20, Chapter 2])

;00 00

1 1 1
n 1_2—321 2n—1y (R(s) >1)

n=1 n—=
(1.3) ¢ (s):= 1
i (1)
gty 2D Cs#£1).
R P (R(s) >0 57 1)
A remarkably useful integral representation ffr) in the elegant form:
1 [ xsi
(1.4) S (r) = —/ zsin(ra)
T Jo et —1

was given by Emerslebenl![6]. In fact, by applyifg {1.4) in conjunction with the generating
function:

z > z"
(1.5) ZOB% (2| < 2n)

e —1
for the Bernoulli numbers

B, (neNy:={0,1,2,...}),
Elbert [5] derived the following asymptotic expansion f(r):

(1.6) S(T)NZ(_l)krgﬁz:l_L_L_... (r = o).

r2  6rt  30r6
k=0

More recently, Guo [10] made use of the integral representdtion (1.4) in order to obtain a num-
ber of interesting results including (for example) bounds $dr). For various subsequent
developments using (1.4), the interested reader may be referred to the works by (among others)
Qi et al ([16] to [19]). (See also amdependentlerivation of the asymptotic expansion (1.6)

by Wang and Wang [24]).
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Several interesting problems and solutions dealing with integral representations and bounds
for the followingmild generalization of the Mathieu seri¢s (1.1):

o0

(17) S,u, (T) = Z (,'123_—”7’2)/1 (T S R+’ > 1)

can be found in the recent works by Dianarida [4], Guo [10], Tomovski and&vski [23], and
Cerone and Lenard[3]. Motivated essentially by the works of Cerone and Lénard [3] (and Qi
[17]), we propose to investigate the corresponding problems involving a family of generalized
Mathieu series, which is defined here by

2a5

(a& + r2)H

(1.8) Sff"ﬂ) (r;a) = Sff"ﬁ) (ri{antie,) Z

(7"705767,u € R+)7

where @nd throughout this papéit is tacitly assumed that theositivesequence

a:={a}; ={a,a, a3, ... 0k, ...} (lgli_g)loak:oo>
is so chosen (and then tipesitiveparametersy, 5, andy are so constrained) that the infinite

series in the definitior) (1].8) converges, that is, that the following auxiliary series:

i 1
pa—p3
n—=1 n

is convergent. We remark in passing that, in a very recent research report (which appeared after
the submission of this paper #PAM), Pogany[14] considered a substantially more general
form of the definition[(1.B). As a matter of fact, Pogany’s investigation [14] was based largely
upon suckmain mathematical tools as the Laplace integral representation of general Dirichlet
series and the familiar Euler-Maclaurin summation formuafg €.9., [20, p. 36et seq]).

Clearly, by comparing the definitionjs (1.1)), (1.7), and](1.8), we obtain
(1.9) Sy (r)=S(r) and S,(r)=82Y (r;{k};,).

Furthermore, the special cases

o (7 {ak}?:l) ) S;Sz’l) (r; {kv}?:l) ’ and o a/2 (r; {k}k 1)

were investigated by Qi [17], Tomovski [22], and Cerone and Lenard [3].

2. A CLASS OF INTEGRAL REPRESENTATIONS

First of all, we find from the definitiorj (1]8) that

(ri{ai) =2 m (=) > Gutma=p’
m=0 n=1 1"
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4 H.M. SRIVASTAVA AND ZIVORAD TOMOVSKI

so that

@y sy =2 Y (M) ()" ol ma- )

(r,o, 3,7 €RT; y (pa — B) > 1)

in terms of the Riemann Zeta function defined py|(1.3).
Now, by making use of the familiar integral representaticiy €.9., [20, p. 96, Equation 2.3

@):
2.2) C(s) = 13)/0 68_ dr  (R(s) > 1)

in (2.1), we obtain

9 o0 py(pa=p)—1
(@B) (oo (210 )y — & -
(2.3) S Ak o) = ¢ (1) /0 e —1

10y (1) (y (poe = B), yer) ; =1 27%] di,

(r, o, 8,7 € RY; 7y (nor — ) > 1),

where , ¥, denotes the Fox-Wright generalization of the hypergeometficfunction with p
numerator ang denominator parameters, defined by/[21, p. 50, Equation 1.5 (21)]

(2:4) quq [(al’ Al) 1 (O‘P>Ap) ; (ﬁla Bl) e (@b Bq) ; Z]
o = §1F<04j+z4jm)'£
B mz:() [[_, T B+ Bym) ml’

q p
(AjeIRa+ (j=1,....,p); B;eR" (j=1,...,q); 1+ZBj—ZAj>0>,
j=1 j=1
so that, obviously,

(2.5) 2V llar, 1), o (0, 1) 5 (61, 1) .., (Bye 1) 5 2]

_ T(a)---T'(ey) : .
B F(ﬁl)r(ﬁq) qu(al""’Oé}ﬂﬂl?'--aﬁwz).

In its special case when

ya=q (¢geN:={1,2,3,...}),

we can apply the Gauss-Legendre multiplication formula [21, p. 23, Equation 1.1 (27)]:

(2.6) ['(mz) = (QW)%(l_m) mm ﬁr (z + Q)
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on the right-hand side of our integral representation (2.3). We thus find that
9 alu-Z]-1

2.7) s\ (r; {kq/“}:;) T T(ep-2)) /OOO xem —1

(o2 )

(r,a,BGW; f— g >q g€ N) ,
where, for convenience\ (¢; \) abbreviates the array gfparameters
A A+1 Aqg—1

) VAR (q E N) *
q q q
Forq = 2, (2.7) can easily be simplified to the form:
00 2 00 4.2[u—(8/a)]-1
(a,8) . 2/ _ Lo
8 50 (0N = s . e

1 r22?
'1F2(M;M—§7M—é+—'— )dz

a 27 4

1

(T7a76€R+; /'L_é>_)
Qo 2

A further special case of (28) can be deduced in terms of the Bessel funktioh of order

V.
o oo _1)m (%Z)H_Qm
(2:9) J”(Z)'_mzzomlf(u—i-m—i—l)
1.\" 2
_ 3%) . L
_—F(V+1)0F1<—7V+1, 4)

Thus, by settingd = joandy. — 1+ 1in (2.8), and applying (2]9) as well ds (2@t m = 2,

we obtain the following known result|[3, p. 3, Theorem 2.1]:

210) S (r e ) = S8 (5 () = S ()
o0 p,+%
- 1ﬁ / :Z J 1 (rx)dx
ey Tt ) Jo e =1
(r,p e RT).

In a similar manner, a limit case ¢f (2.8) whén— 0 would formally yield the formula:
o0 = 2
a,0 . 2/« _
@1y S () =X ey
=1

2 < ks
— \1/% / i Jy1 (rz)dx
e Jo e -1

1
<TER+;M>§),
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which is, in fact, equivalent to the following 1906 result of Willem Kapteyn (1849-1927) [25,
p. 386, Equation 13.2 (9)]:

(2.12) /0 T oayd= P p (V* %) i 1

e — 1

RW)>0; |TN)]<7).

Furthermore, a rather simple consequencé of (2t {2.12) in the form:

e’} 1

1 2 ® 573
(2.13) Z T o 4 # v Jy_1 (cx)dx
(n® + ¢?) (20)°2 T'(s) Jo e —1 "2

(‘ﬁ(s) > %; o] < 1> |

appears erroneously in the works by (for example) Hansen [11, p. 122, Entry (6.3.59)] and
Prudnikovet al. [15, p. 685, Entry 5.1.25.1]. And, by making use of the Trigamma function
Y’ (z) defined, in general, by [20, p. 22, Equation 1.2 (52)]

n=-—oo

m+1

(2.14) W () = U g T ()} = ()
(m € Ny:=NU{0}; z€ C\ Zg; Zy :={0,-1,-2,...})

or, equivalently, by

(2.15) P (2) == (=1)™" ‘Z G = (=)™ ml ¢ (m+1,2)
Z

(meN,zeC\Zo)

in terms of the Hurwitz (or generalized) Zeta functiofs, a) [20, p. 88, Equation 2.2 (1)
et seq], both Hansen [11, p. 111, Entry (6.1.137)] and Prudnikbal. [15, p. 687, Entry
5.1.25.28] have recorded the followiegplicit evaluation of the classical Mathieu series:

(2.16) =Y _ ¥z — v Gn) (i := V=1).

- k:2+r2 a 2ir

k=
We remark in passing that, in light of one of the familiar relationships:

(2.17) T (2) == { 7

sin z

a special case of (2.10) when= 1 would immediately yield the well-exploited integral repre-
sentation[(1}4).
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Next, in the theory of Bessel functions, it is fairly well known that.,(e.g, [7, p. 49,
Equation 7.7.3 (16)])

(2.18) / S st A ()
—(£>V5_)‘M F %(V+)\>’%(V+)\+1); _p_2
2s T(v+1) 2! o ;
(R (s) > 1T (p)]; R +24)>0).
Since
(2.19) R (h—2)=(1-27"  (z/<} ) €C),

the integral formula[ (2.18) would simplify considerably whee-= v 4+ 1 andwhen\ = v + 2,
giving us [see also Equatiorfs (2110) ahd (2.11) above]

OO —st qv <2p)’/ F (V + %)
2.20 ® Jl/ dt = : 1
(2.20) | e a= 2 ]
(%) >17 () 30> -3 )
and
> —st 4v+1 — 2s (2IO>V X I (V + %)
(2.21) /0 e Tt T, (pt) dt N

R(s) > T (p)|; R(v) > 1),

respectively. While each of the special cases (2.20) [and|(2.21), too, together with the parent
formula (2.18), are readily accessible in many different places in various mathematical books
and tablesdf., e.q., [26, p. 72]),[(2.2D) appears slightly erroneously’in [7, p. 49, Equation 7.7.3
(17)]. The integral formulg (2.21) would follow also when we differentiate both sidgs of|(2.20)
partially with respect to the parameter

Now we turn once again to our definitidn ([L.8) which, foe= 2, yields

. - 2a/
(2.22) S (ri{ariey) = @+ r2f (r,8,p € RT).
n=1 n

Making use of the integral formulals (2]20) apd (2.21), we find friom (2.16) that

2 > [ ,
(2.23) 8/52’*3) (ri{ax}ie,y) = T ( a’ e_“"x) 272 J, 1 (ro)de
n=1

()" T () Jo
(r,8,p € RY)

and

~ NZ3 (=~ 51 1
(2.24)  S@P (r:{ap}°,) = —Y— a?Lemme | gt J s (ra)da
I ( { k}k 1) (27")M_§ F(M) 0 ; I 2( )

(r,ﬁ,u € R+) ,
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respectively.
A special case of the integral representatjon (2.24) when

6=1 and pu+—pu+1

was given by Cerone and Lenard [3, p. 9, Equation (4.5)].
Finally, in view of the Eulerian integral formula:

(2.25) / Tepta =T g s 0 m) > 0),
0 S

we find from the definition(1]8) that

2 o0 2
ek = w5 ), (@)
(ra,B,p € RY),
where, for convenience,
(2.27) o (x) = Zag exp (—an x).
n=1

In terms of the generalized Mathieu serigr) defined by), a special case of the inte-
gral representatioif (2.26) when

a=2, B=1, and a, =k (ke N),

was given by Tomovski and Tréavski [23, p. 6, Equation (2.3)].

3. BOUNDS DERIVABLE FROM THE |INTEGRAL REPRESENTATION (2.8)

For the generalized hypergeometyig;, function ofp numerator ang denominator parame-
ters, which is defiend by (3.4) and (R.5), we first recall here the following equivalent form of a
familiar Riemann-Liouville fractional integral formulaf(, e.g., [8, p. 200, Entry 13.1 (95)]:

(31) p+1Fq+1 (pa g, ... 704p;p + g, ﬁl: v 76{]3 Z)

_T(p+o) [1 oy | |
_W/o tP 1(1—15) pFy (o, oo ap; By, ..., By 2t) dt

(p=q+1; min{R(p),R(0)} >0; [z <1 when p=g+1),

which, for

g
p:q—l:o <ﬁ1:’u_a , p:lu7 g =

J. Inequal. Pure and Appl. Mathb(2) Art. 45, 2004 http://jipam.vu.edu.au/
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immediately yields

1 2,.2
«Q a 2 4
T(=5)T(p-2+3) (2)#<5/a>1
O Twri-5 e

—~

Bla)=1

e

1
<r,x,u€R+; §< 5)

(=72 ey (m‘ﬂ> dt

—
=

In terms of the Lommel functios,, , (2) of the first kind, defined by [7, p. 40, Equation 7.5.5
(69)]

Zhtl 1 1 31 1 3 22
3.3 v = E: ]_,— - = - = — - =1,
B3) ) = T e 2( LI LR L 4)

the special case = 1 of (3.9) can be found recorded as a Riemann-Liouville fractional integral
formula by Erdélyiet al. [8, p. 194, Entry 13.1 (64)] (see alsa [8, p. 195, Entry 13.1 (65)]).

Now we turn to a recent investigation by Landaul [12] in which several best possible uniform
bounds for the Bessel functions were obtained by using monotonicity arguments. Following
also the work of Cerone and Lenard [3, Section 3], we choose to recall here two of Landau’s
inequalities given below. The first inequality:

br
(3.4) |, ()] = —=

= J1/3

holds true uniformly in the argument and is the best possible in the exponéntith the
constanb,, given by

(3.5) by = 22 sup {Ai (2)} = 0.674885. . .,

whereAi (z) denotes the Airy function satisfying the differential equation:

d*w

(3.6) Tz T AW = 0 (w=Ai(z)).
The second inequality:
(3.7) |, (z)] < ==

173

holds true uniformly in the order € R* and is the best possible in the exponenwith the
constant;, given by

(3.8) cr, = sup {z'/* Jy (z)} = 0.78574687 .. ..
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By appealing appropriately to the bounds|[in{3.4) (3.7), we find (3.2) that

1 r2z?
(3.9) 1F2(M§M—£7ﬂ—é+—;——>'
o a 2 4
< (3)“"”“( _é_l)% Clp=) T (=2 )T (545 +3)
~ o\ " T (5—2+1)
1
(T,$€R+,p—ﬁ>1;p+é>—1,§<§>
and
1 222
310) | B (pp-Z -0 L v
o a 2 4

2

<T,$€R+;u—§>1;u+§>——; <

« « 3 «

whereb, andc;, are given by[(3)5) andl (3.8), respectively.
Finally, we apply the inequalitie§ (3.9) ar{d (3.10) in our integral representatign (2.8). We

thus obtain the following bounds for the generalized Mathieu series occurripgjin (2.8):

(311) 5 (1 {K} ) < A <u _ g _ 1)

= (QT)M—(B/&)—l

P(p=2+1)T(5+ 4 +3) ( i )
. (0] 107 __+1
PR

1
(r,x,a,ﬁ€R+;é< ;,u—é>l>
Q@ «

|
DN | —
N———

[N

2
and
(aﬂ)( {1.2/a % ) < VT
(3.12) S, ri{k }k:1 = ou—(B/a)-1 pu—(8/a)-3
F(u—§+§)r(%+%+%) g2
. —5 Clu——+3
DT (5 -2 +1) ’
1
(r,az,a,ﬁ e RY; b <5 p— b > 1) ;
a 2 o

where we have employed the integral representatiof (2.2) for the Riemann Zeta fun@tipn
b, andcy, being given (as before) by (3.5) arid (3.8), respectively.
In their special case when
1

ﬁ—>§oz and pur— p+1,

the bounds in[(3.11) andl (3]12) would correspond naturally to those given earlier by Cerone
and Lenard([B, p. 7, Theorem 3.1]. Teecondbound asserted by Cerone and Lenaid [3, p.
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7, Equation (3.12)] should, in fact, be corrected to incliidge + 1) in thedenominatoron the
right-hand side.

4. INEQUALITIES ASSOCIATED WITH GENERALIZED MATHIEU SERIES

We first prove the following inequality which was recently posed as@emproblem by Qi
[17, p. 7, Open Problem 2]:

00 .t 2 )
4.1) (/0 x:ln—_(rlx) dac) > 27’2/0 227 f () da

(T eR"; f(x) = Zn‘fw) ;

which, in view of the integral representation (1.4), is equivalent to the inequality:
(4.2) 1S (1)) > 2 / 2 e f () da,

0
wheref (z) is defined as i (4]1).

Proof. Since the infinite series:

oo
Z ne—(n2+r2>x
n=1

is uniformly convergent whem € R*, for the right-hand side of the inequalify (4.2), we have

2/ 2 e f (x) dv = 2/ z” (Z ne—<"2+’”2)’”> dx
0 0 n=1

=2 Z TL/ 1'2 67<n2+r2)x dm
0

n=1
> n

:4 —:28 r,
2 Gy 2 0)

1

where we have used the Eulerian integral formfla (2.25). Hence it is sufficient to prove the
following inequality:

(4.3) [S (r)]* > 2S5 (r)

which was, in fact, conjectured by Alzer and Brenner [2] and proven by Wilkinss [27] by re-
markably applying series and integral representations for the Trigamma fug¢tiondefined

by (2.14) form = 1. O

We conclude our present investigation by remarking that it seems to be very likely that the
inequality [4.1) can be generalized to the following form:
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Open Problem. Prove or disprove that

(4.4) </0 de) > (n+1) /0 w e f (v) de

<r,;¢ eERY; f(z):= ine_"%)
n=1

or, equivalently, that

45) s> T s )
(r,p e RT),
since
(4.6) /Ooo 2 e f(2)de =T (u+1) nzl =~ +’12)#H _.T (u2+ 1) S1 (r),

by virtue of the Eulerian integral formulp (2]25) once again.
The open problenj (4.1), which we have completely solved here, correspondssiuettial
caseu = 2 of the Open Problenj (4.4) posed in this paper.
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