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1. INTRODUCTION

Let o(n) denote the sum of divisors of the positive integer.e. o(n) = >_,,, d, where by

conventions (1) = 1. It is well-known thatn is calledperfectif o(n) = 2n. Euclid and Euler

([20], [21]) have determined all even perfect numbers, by showing that they are of the form
n = 2821 — 1), where2**! — 1 is a prime § > 1). The primes of the form**! — 1 are

the so-called Mersenne primes, and at this moment there are known exactly 41 such primes (for
the recent discovery of th&l** Mersenne prime, see the sitavw.ams.ory It is possible that

there are infinitely many Mersenne primes, but the proof of this result seems unattackable at
present. On the other hand, no odd perfect number is known, and the existence of such numbers
is one of the most difficult open problems of Mathematics. D. Suryanarayana [23] defined the
notion of asuperperfechumber, i.e. a number with the propertyr(o(n)) = 2n, and he and

H.J. Kanold [23], [[11] have obtained the general form of even superperfect numbers. These
aren = 2%, where2**! — 1 is a prime. Numbers. with the propertyoc(n) = 2n — 1 have

been callecalmost perfectwhile that ofo(n) = 2n + 1, quasi-perfect For many results and
conjectures on this topic, see [9], and the author’s bbok [21] (see Chapter 1).
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2 JOZSEFSANDOR

For an arithmetic functiory, the numbem is called f-perfect if f(n) = 2n. Thus, the
superperfect numbers will be in fact the o-perfect numbers where™ denotes composition.
The Euler totient function, resp. Dedekind’s arithmetic function are given by

(1.1) wm):n£1<1—%), ¢@)=nII(1+%),

wherep runs through the distinct prime divisors of Following convention we letp(1) =
1,9(1) = 1. All these functions are multiplicative, i.e. they satisfy the functional equation
f(mn) = f(m)f(n) for (m,n) = 1. For results on) o ¢)-perfect, o o-perfect,o o y-perfect,
andy o p-perfect numbers, see the first part(ofi[18]. ké&tn) be the sum of unitary divisors

of n, given by

(1.2) o*(n) =[] 0" +1),

p*[|n

wherep®||n means that for the prime powgt one hag®|n, butp®*! 1 n. By convention, let
0*(1) = 1. In [18] almost and quasi* oo *-perfect numbers (i.e. satisfying(c*(n)) = 2nF1)
are studied, where it is shown that foer> 3 there are no such numbers. This result has been
rediscovered by V. Sitaramaiah and M.V. Subbarao [22].

In 1964, A. Makowski and A. Schinzel [13] conjectured that

(1.3) a@mnzgjmmmzL

The first results after the Makowski and Schinzel paper were proved by J. Sandor [16], [17].
He proved that (1]3) holds if and only if

(1.4) o(p(m)) > m, foralloddm > 1

and obtained a class of numbers satisfying](1.3) (1.4). [Bdt (1.4) holds iff is it true for
squarefreen, see [17],[18]. This has been rediscovered by G.L. Cohen and R. Gupta ([4]).
Many other partial results have been discovered by C. Pomerance [14], G.L. Cohen [4], A.
Grytczuk, F. Luca and M. Wojtowicz [7], [8], F. Luca and C. Pomerance [12], K. Fard [6]. See

also [2], [19], [20]. Kevin Ford proved that

(1.5) a@mnzéﬁjmmm.
In 1988 J. Sandof [15], [16] conjectured that
(1.6) Y(p(m)) > m, for all oddm.
He showed thaf (116) is equivalent to
n
(L7) ble(n) 2 5

for all n, and obtained a class of numbers satisfying these inequalities. In 1988 J. Sandor [15]
conjectured also that

(1.8) e((n)) < n, foranyn > 2

and V. Vitek [24] of Praha verified this conjecture for< 10%.

In 1990 P. Erds [5] expressed his opinion that this new conjecture could be as difficult as
the Makowski-Schinzel conjecturie (1.3). In 1992 K. Atanassov [3] believed that he obtained a
proof of (1.8), but his proof was valid only for certain special values.of

Nonetheless, as we will see, conjectufes|(1[6)] (1.7) (1.8) are not generally true, and it
will be interesting to study the classes of numbers for which this is valid.
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The aim of this paper is to study this conjecture and certain new properties of the above — and
related — composite functions.

1.1. Basic symbols and notations.

e o(n) = sum of divisors ofs,

c*(n) = sum of unitary divisors of,

©(n) = Euler’s totient function,

1(n) = Dedekind’s arithmetic function,
e [z] = integer part ofr,

e w(n) = number of distinct divisors af,

e a|b=a dividesb,

e a1b=adoes notdivide,

e pr{n} = set of distinct prime divisors of,
e f o g =composition off andg.

2. BAsSIC LEMMAS
Lemma 2.1.
(2.1) o(ab) < ap(b), foranya,b > 2
with equality only ifpr{a} C pr{b}, wherepr{a} denotes the set of distinct prime factors:of

ab=[Tr 11 1]

pla,ptb qla,qlb r|b,rfa

I T ) T
SUEHBIEHEES

sop(ab) < ap(b), with equality if "p does not exist", i.ep with the propertyp|a, p 1 b. Thus
for all p|a one has alsp|b. O

Proof. We have

SO

Lemma 2.2.If pr{a} ¢ pr{b}, then for anyu, b > 2 one has

(2.2) p(ab) < (a —1)p(b),
and
(2.3) Y(ab) > (a+ 1)¥(b).

Proof. We give only the proof of (2]2).
Leta = [[p*-[1¢% b =[]r"-]]¢”, where the; are the common prime factors, and the
p € pr{a} are such thap ¢ pr{b}, i.e. suppose that > 1. Clearlys, 5’,v > 0. Then

()

1 1 1
L(-5) = e
I R R
[Ip*-11¢° = IIp* —  Ilp

Now,
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by a > 1. The inequality
1 1
l—— > i
Hp_II( p)
is trivial, since by putting e.gp — 1 = u, one gets

H(u+1)21+Hu,

and this is clear, since > 0. There is equality only when there is a single.e. if the set of
p such thapr{a} ¢ pr{b} has a single element, at the first power, andja 0, i.e. when
a = ptb. Indeed:

@(pb) = p(p)p(b) = (p — 1)¢p(b).

O
Lemma 2.3.Forall a,b > 1,
(2.4) o(ab) > ao(b),
and
(2.5) W(ab) > ath(b).

Proof. (2.4) is well-known, see e.d. [16], [18]. There is equality here, only:fer 1.
For (2.5), letu|v. Then

SO ) < I () T (1) =5

with equality if ¢ does not exist witly|v, ¢ t v. Putv = abandu = b. Thenw < “’(“ becomes
exactly [2.5). There is equality if for eagiy one also hap|b, i.e. pr{a} C pr{b} O

Remark 2.4. Therefore, there is a similarity between the inequalifies (2.1)[anfl (2.5).

Lemma 2.5. If pr{a} ¢ pr{b}, then for anyu, b > 2 one has

(2.6) o(ab) > Y(a) - o(b).

Proof. This is given in[[16]. O
3. MAIN RESULTS

Theorem 3.1. There are infinitely many such that

(3.1) P(p(n)) < p((n)) <n.

For infinitely manym one has

(3.2) p(¥(m)) < P(p(m)) <m.
There are infinitely many such that
(3.9 P(6(K)) = 50 (o(R)).

Proof. We prove thaf(3]1) is valid far = 3-2¢ for anya > 1. This follows fromy(3-2%) = 2¢,
¢(2a) =3. 2(1—1’ w(?) K 2(1) =3. 2a+1’ QO(S . 2a+1) — 2a+1’ SO

3-2 > p(¥(3-2%) > P(p(3-2%)).
For the proof of[(3.2), putr = 2¢-5° (b > 2). Then an easy computation shows thép(m)) =
20+1. 32 52 andp(i(m)) = 2°*2 - 3. 5°-2 and the inequalities (3.2) will follow.
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Forh = 3° remark thatp(¢)(h)) = 5 - h andy(p(h)) = 5 - h, SO

(3.4) p(¥(h)) <h <(e(h)),
which complete[(3]1) andl (3.2), in a certain sense.

Finally, for k = 2° - 7 (b > 2) one can deduce(p(k)) = 55 - k, ¢(¢(k)) = 2 - k, 50 [3.3)
follows. We remark that since

(3.5) b(p(k)) <k,

by (3.3) and|(3.5) one can say that

(36) Pl(R) < 5.

for the above values df. Remark also that fok in (3.4) one has

3.7) P () = 36 (e(R)).

For the valuesn given by [3.2) one has

38) P((m)) = 6 (o(m).

Forn = 2. 3° (b > 2) one can remark that(v(n)) = ¥ (p(n)). O

More generally, one can prove:

Theorem 3.2.Letl < n = p{*p5* - - - p~ the prime factorization of and suppose that the odd
part of n is squarefull, i.e«; > 2 for all 7 with p; > 3.
Theny(y(n)) = ¥ (p(n)) is true if and only if

(3.9) pri{p—1) - (pr =} Cpr{ps,....p,} and
pr{p+1)-(p + 1)} Cprips,...,pe}.
Proof. Since
p(n)=pH e pt Tt (pr— 1) (pr— 1)
and
d(n) =ppt T (i 1) (pe 4 1),
one can write

a1 — Qr— 1
Vo) =pi = p (o= 1) (py — 1) - 1+ -
1 t
t(pIt pR T (p1—1) - (pr—1))
and
o o 1
pn) =p g () (e 1) - 11 (1_5)'
Al pf T (pr 1) (pr—1))

Sincea; — 1 > 1 whenp; > 3, the equality(o(n)) = p(1(n)), by

<p1—1>--~<pr—1>.(Hpil)...(l%)

=(p1+1)---(pr+1)-(1—2%1)---(1—]%),

()= I ()

t|(p1—1)-(pr—1) al(p1+1)-(pr+1)

can also be written as
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Sincel + % > 1andl — % < 1, this is impossible in general. It is possible only if all prime
factors of(p; + 1) --- (p, — 1) are amongy, ..., p., and also the same for the prime factors of
(pr+1)-(pr+1). O

Remark 3.3. For examplep = 2% - 3° - 5 witha > 1,b > 2, ¢ > 2 satisfy [3.9). Indeed
pr{2-1)EB-1D(G-1}={2},pr{2+ DB+ 1)(5+1)} = {2,3}.

Similar examples are, = 2¢ -3 .5¢. 79 n = 20.30.5¢. 114 n = 22.3%.7¢.13%
n=20.30.50.74.11¢. 13/, n = 2¢. 3V . 17, etc.

Theorem 3.4. Letn be squarefull. Then inequality (1.8) is true.
Proof. Letn = pS" - - - po with a; > 2 forall i = 1,7. Then
p((n) = oM~ pd (e 1) - (pr + 1))
< (1) (o +1) (e,
by Lemmg 2.]L. But
et ) = T (g = 1) (p = 1),
sincea > 2. Then

e(p(n)) < (pi — 1)+ (P2 —1) - pft 2 por?
e ()6
! r p? p2)’
SO

(3.10) o((n)) <n- <1 _ l) (1 - i) |

2 2
pl pr
There is equality in[(3.70) if

pr{(pr +1)---(pr + 1)} C{p1,..., 0}
Clearly, inequality[(3.7]0) is best possible, and by

1 1
(- 4) (1) <
pl pr

it implies inequality [(1.B). O
Theorem 3.5. For anyn > 2 one has
(3.11) % (n {@}) <n,

where[z| denotes the integer part af
Proof. It is immediate that

M:H(l—i)<1
n? p? ’

pln
sop(n)i(n) < n? for anyn > 2. Now, by {2.1) one can write
o (0[] < [E2] oy < 20 <
n n n
by the relation proved above. O
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Remark 3.6. If n|y(n), i.e., when [@} = @ relation (3.11) gives inequalit.8), i.e.
©(1(n)) < n. For the study of an equation
(3.12) w(n)=k-n

we shall use a notion and a method of Ch. Wall [25]. We saysthiato-multiple of m if m|n
andpr{m} = pr{n}.
We need a simple result, stated as:

Lemma 3.7. If m andn are squarefree, ané@% = @ thenn = m.
Proof. Without loss of generality we may suppose
(m,n)=1,mmn>1, m=q---q (@ <---<q)
and
n=pr--pe(Pr<- <Dk
Then the assumed equality has the form
n(l+q) - (1+q)=ml+p) - (1+ps).

Sincepy|n, the relation

Pel(T+p1) - (1 + pr—1) (1 + pr)
impliespx|(1 + py,) for somei € {1,2,...,k}. Here

IL+p < - <1l+pe1 <1+py,

so we must havey|(1 + px_1). This may happen only wheh = 2, p; = 2, po = 3; j =
2, ¢ =2, g3 = 3(since fork > 3, pp —pr1 > 2, 80px { (1 4 pr_1)). In this case
(n,m) =6 > 1, a contradiction. Thus = j andp;, = ¢;. 0

Theorem 3.8. Assume that the least solutien, of (3.12) is a squarefree number. Then all
solutions of[(3.12) are given by themultiples ofr,.

Proof. If n is w-multiple of n,, then clearly

) _ o) _
n N ’
by (I1.1).Conversely, if: is a solution, setn = greatest squarefree divisoref Then
b(n) _wlm) _ ()
n m ng
By Lemmd 3.V m = ny, i.e.n is anw-multiple of n. O

Theorem 3.9. Letn > 3, and suppose that is ¢-deficient, i.e.t)(n) < 2n. Then inequality

(1.8) holds.

Proof. First remark that for any: > 3, v¢(n) is an even number. Indeed,if = 2¢, then
(n) = 2971 . 3, which is odd only forx = 1, i.e.n = 2. If n has at least one odd prime factor

p, then by [(1.11)#/(n) will be even.
Now, applying Lemma 2|1 fob = 2, one obtainsp(2a) < a, i.e. p(u) < § foru = 2a
¥

r
(even). Here equality occurs only when= 2% (k > 1). Now, p(¥(n)) < 2% 4 (n) being
even, and since is y-deficient, the theorem follows. O
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Remark 3.10. The inequality

Y(n
(319 o (i) < X
is best possible, since we have equalitydon) = 2. Letn = p%' - - - por; thenp$* ... por—1.
(p1+1)--- (p,+1) = 2Fispossible only ifv; = - - = a,, = 1, andp;+1 = 24,. .., p,+1 = 2%

i.e. whenp; = 2§ —1,...,p, = 2¢ — 1 are distinct Mersenne primes, and= p; - - - p,. SO,
there is equality in[(3.13) iff. is a product of distinct Mersenne primes. Since by Theorem
one has)(n) = 2n iff n = 2%-3° (a,b > 1), if one assumes(n) < 2n, then by [(3.1B),
inequality [1.8) follows again. Therefore, in Theorem 3.9 one may assyme< 2n.

Let w(n) denote the number of distinct prime factorsrof Theorem 3.9 and the above
remark implies that when is even, andv(n) < 2, ) is true. Indeed, + ; = 2 < 2, and
(143) (1+3) =2. Soe.g. whem = pi' - p3?, then

(1o 102) () ()

On the other hand, if is odd, andu(n) < 4, then [1.8) is valid. Indeed,

AN TN I N CUNE I I P
3 5 7 11) 3 5 7 11 1155

Another remark is the following:

If 2 and 3 do not divide:, andn has at most six prime factors, thei(n)) < n. If 2, 3 and
5 do not dividen, andn has at most 12 prime factors, then the same result holds true. If 2, 3, 5
and 7 do not divider, andn has at most 21 prime factors, then the inequality is true.

If 2 and 3 do not divide:, we prove that)(n) < 2n, and by the presented method the results
will follow. E.g., whenn is not divisible by 2 and 3, then the least prime factonaould be 5,
SO

p(n) - 6 8 12 14 18 20 24 30 32

n 5 7 11 13 17 19 23 20 31 7
and the first result follows. The other affirmations can be proved in a similar way.
In [16] it is proved that

3¢ . p(n), if nis even

(3.14) vln) < { 240 . o(n), if nis odd’

Thus, as a corollary of (3.13) add (3/14) one can state tf?éﬁ{w < n (or<mn), forn
even; an@“(-1 . x(n) (or < n) for n odd, then relatior] (1]8) is valid.

By 3.1§), ifn is a product of distinct Mersenne primes, the@(n)) = “2. We will prove
thate(n) < 2n for suchn, thus obtaining:

Theorem 3.11.If n is a product of distinct Mersenne primes, then inequdlity| (1.8) is valid.

Proof. Let n = M;---M,, whereM; = 2Pi — 1 (p; primes,i = 1,2,...,s) are distinct
Mersenne primes. We have to prove tiiat — 1)---(2Ps — 1) > 2T *tPs=1 or equiva-
lently, (1 — 557) -+ (1 — 555) > 5. Clearlyp; > 2, po > 3,...,p, > s+ 1, so it is sufficient
to prove that

1 1 1
219 (1) (1) =
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In the proof of (3.1p) we will use the classical Weierstrass inequality

S S

(3.16) [Ta-a)>1-> .

k=1 k=1

wherea,;, € (O 1) (see e.g. D.S. Mitrinogi: Analytic inequalitiesSpringer-Verlag, 1970).
Puta; = 5 in (3.16). Since

i L1t 1)L -5\ 281
2k+L 4 2 2-1) 4 \1-1) 2841

k=1
3.18) becomes equivalent to— 2k+} > 1, 0r; > 323 i.e. 28 > 2F — 1, which is true.
herefore,|(3.1]5) follows, and the theorem is proved. O

Remark 3.12. By Theorenj 3.23 (see relatidn (3]29))pif= M7* - - - M2 (with arbitrarya; >
1), the inequality[(1.8) holds true.

Related to the above theorems is the following result:

Theorem 3.13.Letn be even, and suppose that the greatest oddnpaot » is ¢ -deficient, and
that3 1 ¢)(m). Then[(1.B) is true.

Proof. Letn = 2% - m, when
p(v(n)) = (2" 3¢(m)) = 2- (2" - ¥ (m))
since(3,2571 - 4)(m)) = 1. But
p(2"1(m)) <272 p(m) <2V om,
sop(1(n)) < 2F-m =n. O
Remark 3.14. In [18] it is proved that for allh > 2 even, one has
(3.17) p(o(n)) = 2n,

with equality only ifn = 2%, where2"+! — 1 = prime. The proof is based on Leminal2.3. Since
o(m) > ¢(m), clearly this implies

(3.18) o(o(n)) > 2n,

with the above equalities. So, the Surayanarayana-Kanved theorem is reobtained, in an im-
proved form.
In [18] it is proved also that for alk > 2 even, one has

(3.19) o(th(n)) > 2n,
with equality only forn = 2. What are the odd solutions ef(n)) = 2n?
We now prove:

Theorem 3.15.Letn = 2¥-m be evenk > 1, m > 1 odd), and suppose that is not a product
of distinct Fermat primes, and that satisfies[(1)6). Then

(3.20) o(e(m) Zn—m > 2.
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Proof. First remark that ifm is not a product of distinct Fermat primes, thetm) is not a
power of 2. Indeed, ifn = p{* - - - p?7, then

p(m) =pptpr T (= 1) (pr = 1) = 2°
iff (sincep; > 3),
ag—1l=-=a—-1=0
and
p—1=2% ..., p.—1=2°,

p1:281+1,...,p7~:28r+1
are distinct Fermat primes. Thus there exists at least an odd prime diviggmof Now, by

Lemmd 2.5,
o(p(2"-m)) =027 p(m)) = Y(p(m)) - o2 Z2m- (2" 1) =n—m,

by relation [(1.5). The last inequality df (3]20) is trivial, sinee < % = 2¢~! . m, where
k—12>0. O

Remark 3.16. Relation [3.1]7) gives an improvement pf (1.3) for certain values of

Theorem 3.17.Letp be an odd prime. Then

(3.21) p(¥(p) < ——.

with equality only ifp is a Mersenne prime, and(o(p)) > g - (p — 1), with equality only ifp
is a Fermat prime.

Proof. ¢(p) = p+ 1 andp + 1 being evenp(p + 1) < 2L, with equality only ifp + 1 = 2%,
i.e. whenp = 2¥ — 1 = Mersenne prime. Sinc§~ (p — 1) > p, this inequality is better than

(1.6) forn = p. Similarly, o(p) = p—1 = even, so)(p — 1) > £ - (p — 1), on base of the
following: O

Lemma 3.18.If n > 2 is even, then

(3.22) ¥(n)

with equality only ifn = 2¢ (power of 2).

v
Dol o
S

Proof. If n =22 . N, with NV odd,

Y(n) =9(2%) - p(N) =213 ¢(N)>2""".3. N =

NN GV]

VIR
Equality occurs only, wheV = 1, i.e. whenn = 2°. O

Sincep — 1 = 2% impliesp = 2% + 1 = Fermat prime,[(3.21) is completely proved. Since
2. (p—1) > p, this inequality is better thah (.6) fer= p.
Remark 3.19. Forp > 5 one hag’* < p < 2 (p — 1), so [3.21) implies, as a corollary that

(3.23) e (p) <p < Y(e(p)),

for p > 5, prime.
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This is related to relatiorj (3.4). # is even, and: # 2* (power of 2), then since/(N) >
N + 1, with equality only whenV is a prime, [(3.22) can be improved to

3 n
(3.24) ) 2 - (n+ 1),
with equality only forn = 2¢ - N, whereN = prime.
Theorem 3.20.Leta, b > 1 and suppose thatlb. Thenp(y(a))|e (1 (b)) andy(p(a))|w(p(D)).
In particular, if a|b, then

(3.25) e((a)) < e(®));  Y(pla)) < ¢(p(b)).

Proof. The proof follows at once from the following:
Lemma 3.21.1f a|b, then

(3.26) p(a)]e(b),
and
(3.27) ¥(a)|y(b),
0

Proof. This follows by @) see e.d. [16], [18]. O

Now, |f a|b theny(a)|y(b) by (3.27), so by-6)<,o (¢(b)). Similarly, a|b im-
plies(a)|p(b) by (3.2 -) so by[(3.47) (¢ (¢(b)). The mequalltles in (3.22) are trivial
consequences

Remark 3.22. Let a = p be a prime such that{ k, and puth = kP~ — 1
By Fermat's little theorem one hasb, so all results of[(3.25) are correct in this case. For

example(¢(a)) < ¢ (¢(b)) gives, in the case of (3.25), and Theofem B.15:

_ 3
(3.28) V(R = 1) 2 4(e(p) 2 5 - (P = 1),
for any primep 1 k, and any positive integér > 1.
Let (n, k) = 1. Then by Euler’s divisibility theorem, one has similarly:

(3:29) Yk = 1)) = Y (p(n)),
for any positive integers, k£ > 1 such thatn, k) = 1.

Letn > 1 be a positive integer, having as distinct prime factars. ., p,. Then, using[(1]1)
it is immediate that

(3.30) p(n)|v(n)

iff (p,—1)---(p, — 1)|(p1+1) - - (p, +1). For example[(3.30) is true far= 2, n = 2™ . 5°
(m, s > 1), etc. Now assuming (3.80), by (3126) one can write the following inequalities:

(3.31) p(P(p(n)) < e(¥($(n))) andy(e(p(n))) < Y(p¥(n))).

By studying the first 100 values afwith the property[(3.30), the following interesting exam-
ple may be remarkedy(15) = ¢(16) = 8, (15) = ¥(16) = 24 andp(15)|(15). Similarly
©(70) = p(72) = 24, 1(70) = (72) = 144, with ©(70)|(70).

Are there infinitely many such examples? Are there infinitely marsuch thatp(n) =
e(n+1)andy(n) = (n+1)? Orp(n) = ¢(n + 2) andy(n) = Y(n + 2)?

Leta = 8,b = o(8k —1). Thenal|b (see e.g.[[18] for such relations), and sinde(8)) = 6,
©(¥(8)) = 12, by (3.25) we obtain the divisibility relations

(3.32) 6l¢(p(o(8k —1))) and12|p(y(a(8k — 1))
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fork > 1.
The second relation implies e.g. that4fy(o(n))) = 2n, thenn # —1 (mod 8) and if
e((o(n))) = 4n, thenn # —1 (mod 24).

Theorem 3.23.Inequality [1.8) is true for am > 2 if it is true for the squarefree part of > 2.
Inequality [1.6) is true for an odeh > 3 if it is true for the squarefree part ofi > 3.

Proof. As we have stated in the Introduction, such results were first proved by the author. We
give here the proof for the sake of completeness.
Letn’ be the squarefree partofi.e. ifn = pi* - - - p, thenn’ = p, - - - p,. Then

e((n) =@ pi Tt (pr+ 1) (pr + 1)
<pp e p((pr+ 1) - (pr + 1)

= = p(u(n))
by inequality [(2.1L).
Thus
(3.33) so(tbn(n)) < @(@Dn(jl’))_

Therefore, if?0") < 1, then2) < 1. Similarly one can prove that

330 vlom) , (elm)
m m
so if (1.8) is true for the squarefree part of m, then [1.6) is true also fon.
As a consequencg, (1.8) is true formalif and only if it is true for all squarefree.
As we have stated in the introductiop, (1.6) is not generally true forallet e.g.m = 3- F,
whereF > 3 is a Fermat prime. Indeed, piit= 2% + 1. Thenp(m) = 251, so

Y(p(m)) =28.3<3-(2"+1)=3-F=m,

contradicting[(1.6). However, if» has the formm = 5. F, whereF’ > 5 is again a Fermat
prime, then[(1.6) is valid, since in this case

P(p(m)) =6-25>5- (2" +1) =m.

Y

More generally, we will prove now:

Theorem 3.24.Let5 < F} < --- < F; be Fermat primes. Then inequalify (]L.6) is valid (with
strict inequality) form = F{"* - .. F%, with arbitrary a; > 1 (i = 1, s).

Proof. Let F; = 1 + 22" (1 > 1) be Fermat primes, whetg > 1. Sinceb, < by < -+ < by,
clearlyb;, > i foranyi = 1,2,...,s. By (3.34) it is sufficient to prove the result for’ =
Fy --- F,, when [1.6) becomes, after some elementary computations:

1 1 3
(3.35) (1 + 22,,1) (1 + 27) <3

We will prove that[(3.3b) holds with strict inequality. By the classical Weierstrass inequalities
one has

S

H(1+ak) < !

S )
i) 1= s an

whereq, € (0,1).
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Sinceb; > 1, it is sufficient to prove that

1 1 3
3.36 I+= ) (1+=)<=
030 (1e3) () =3
Putay, = 22" (k > 1), so by the above inequality, it is sufficient to prove that
1 1 1 1
(3.37) Z=ﬁ+ﬁ+-~+ﬁ<§.
Clearly (3.37) is true fos = 1,2, since} < 4, 1 + 15 = & < 3. Lets > 3. Then, since
2% > s+ 5 for s > 3, we can write

+
—5+ 1 . 1
16 128 95—2

16
5 1 41 1

<

16 128 128 3
and the assertion is proved. O

Remark 3.25. By Lemmd 2.2, relatior] (2]2) one can write successively
e((pr+ 1)(p2 + 1)) < pap(pr + 1) < pipa, i prips + 1} & prip + 1}
p((pr+ 1) (p2 +1)(ps + 1)) < psp(pr +1)(p2 + 1) < prpaps,
if in addition +1 +1 +1
(3.38) prips + o pri(p ) (P2 )}
P+ 1) (e + Ve + 1) <pro((pr+1) -+ (pr—r + 1) <pr---pr,
if pr{pr +1} Z pr{(pr + 1)+ (pr—1 + 1)}
is satisfied, then by Theorgm 3|23, inequality(1.8) is valid.
Similarly, by using Lemma 2]2] (2.3), and Theoriem B.23, we can state that if
prip: — 1} & prig — 1},
pri{gs — 1} & pr{(p1 — )(p2 — 1)},
prig— 1y Z pri{(pr = 1) -+ (g1 = D)},
then inequality [(1J6) is valid. (Her@, ¢, ..., ¢, are the prime divisors of the odd number
m > 3.)

Remark 3.26. Inequality [1.8) is not generally true. Indeed, for= 39270, n = 82110, or

n =2-3-5-7-17-23-M, where)/ is a Mersenne prime, greater or equal tBasthen [1.8) is not

true. This has been communicated to the author by Professor L. Téth. Prof. Kovacs Lehel Istvan

found recently the counterexamples: 53130, 71610, 78540, 106260, 108570, 117810, 122430,
143220, 157080, 159390, 164010, 164220, 212520, 214830, 217140, 235620, 244860, 246330,
247170, 286440, 293370, 314160, 318780, 325710, 328440, 353430 and 367290.

Now by using a method of L. Alaoglu and P. Bi[1], we will prove that:

(3.39)

Theorem 3.27.For anyd§ > 0, the inequality

(3.40) p(¥(n)) <d6-n
is valid, excepting perhaps € S, whereS has asymptotic density zero.
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Proof. We prove first that for any given prime the set ofn such thatp|y(n), has density 1.
This is similar to the proof given in [1].

On the other hand, since,,,_, ¢(n) ~ 5 - 2> asz — oo (see e.g.[[16]), we can say that
excepting at most a number of = integersn < x, one has)(n) < c(e) - n, wherec(e) > 0.

Let nowp be a prime such that
1 )
1-=) <—
Il ( Q) c(€)

q<p

(this is possible, S|ncE[q<p — %) — 0 asp — o0).

Then, ifz is large, then for alh < z, excepting perhaps a numbernpfz + ¢ - z integers one
hasy(n) < ¢(e). n andy(n) = 0(mod ¢) for anyq < p, (n > 0).

But for these exceptions one ha&/)(n)) < ¢ - n, and this finishes the proof;, ¢ > 0 being
arbitrary. O

Remark 3.28. It can be proved similarly that

(3.41) Y(p(n)) > 8- n,
excepting perhaps a set of density zero.

Theorem 3.27 implies thaim inf £Wm) — (), and so, one hasm sup M = +o00. For

n—0oo n—oo

other proofofthese results, seel[16]. We cannot determine the following véiluesaf ") —
?, lim sup £&®) ("))

However, we can prove that:

Theorem 3.29.

n—oo n

N | —

: k is a multiple of4} <

Proof. Let k be a multiple of 4, ang > g Then
1 k E. p—1 p—1
“kp) = - —920(=) . L= — (k)=
w(Q p) @(2><ﬂ(p) P(5) 5 = elk) =5

since2|%. Now by (ab) < v(a)y(b) one can write

o (o (5t) ) < wtetne (257).

Sincey (1) < o (2), and by the known result of Makowski and Schinzah inf ( ) =
1, from the above one can write: =
1
=k
lim inf 1/)(901(2 p)) < (e (k)) -lim inf
p—00 okp k p—00

and now relation[(3.42) follows, by takirigf afterk.
Since

’B

W ( 1)_ p(k))

k I

Hw|

M|

22 _1=F,-F,-F,-F;-F,,
whereF, = 22" + 1, and allF; (0 < i < 4) are primes, it follows, that
()0(232 o 1) — 21 . 22 . 24 .28 .216 — 231‘
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Thus p(4(2%% — 1)) = 232, by gp( ) = 2. Sincey(2%?) = 231 3, by letting in [3.42)k =

4-(2% —1), we get thenf < 23231) < 2'(5_0), wheref) > . In any case we get in (3.42)
3
thatlim inf < 3, and fact avalue slightly greater thg%g =2, O

In [16] it is asked the value dfm inf w “em) < 1. We now prove that this value is 1:
Theorem 3.30.

(3.43) lim inf M =1.
n
Proof. Slnced’( o) > ( ) > 1, clearly this limit is> 1. By the above inequality, the result

follows. However we glve here a new proof of this fact. We remark that, spicé) <
Y(N) < o(N), and by the known result

lim QO(N(C%p)) — lim M =1
p—oo  N(a,p) p—cc N(a,p) 7

@=L (a > 1,p prime) we easily get

p—17

. p(N(a,p)) _
(3.44) plggo N(a.p) =1.

whereN (a,p) =

Now leta = ¢ an arbitrary prime in/ (3.44). We remark thtq, p) = ‘1:%11 = o(¢""'). Now,
by

o) -1 4
¢t (=1t g1
asp — oo, from (3.44) we can write:

blol@) _ g

Y

(3.45) ,}H& pr 1 <1l+e,
for ¢ > q(e), e > 0. Now by (3.45),[(3.4B) follows. O
Remark 3.31. In [16] it is proved, by assuming the infinitude of Mersenne primes, that
(3.46) lim inf M = g

n—oo n

Can we prove| (3.46) without any assumption?

We have conjectured in [16] that the following limit is true, but in the proof we have used
the fact that there are infinitely many Mersenne primes. Now we prove this result without any
assumptions:

Theorem 3.32.We have
(3.47) liming V) _ 3

n 2
Proof. Sincew(n) > 2n for all evenn, andy(n) > n for all n, clearlyy(¢/(n)) > 2 - n for
all n, therefore it will be sufficient to find a sequence with IirglitBy using deep theorems on
primes in arithmetical progressions, it can be proved, as in Makowski-Schinzel [13] that
o(a) o(a) _
a a

lim sup = lim inf

asp tends to infinity, where = (p—;l) andp =1 (mod 4).
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Since @t is odd, we get

0(1?+U=a(2-@):3.0(@)7

implying thatlim inf 22 = 2 Sincey(n) < o(n), we can write thatim inf L) < 3,

By W(’;%l)) > 3, this yieldslim inf @ = 3, completing the proof of the theorem. [
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