INEQUALITIES FOR THE MAXIMUM MODULUS OF THE DERIVATIVE OF A POLYNOMIAL

A. AZIZ AND B.A. ZARGAR
Department of Mathematics
University of Kashmir, Srinagar-India
zargarba3@yahoo.co.in
Received 17 May, 2006; accepted 18 December, 2006
Communicated by Q.I. Rahman

AbStract. Let $P(z)$ be a polynomial of degree n and $M(P, t)=\operatorname{Max}_{|z|=t}|P(z)|$. In this paper we shall estimate $M\left(P^{\prime}, \rho\right)$ in terms of $M(P, r)$ where $P(z)$ does not vanish in the disk $|z| \leq K, K \geq 1,0 \leq r<\rho<K$ and obtain an interesting refinement of some result of Dewan and Malik. We shall also obtain an interesting generalization as well as a refinement of well-known result of P. Turan for polynomials not vanishing outside the unit disk.

Key words and phrases: Polynomial, Derivative, Bernstein Inequality, Maximum Modulus.
2000 Mathematics Subject Classification. 30C10, 30C15.

1. Introduction and Statement of Results

Let $P(z)$ be a polynomial of degree n and let $M(P, r)=\operatorname{Max}_{|z|=r}|P(z)|$ and $m(P, t)=$ $\min _{|z|=t}|P(z)|$ concerning the estimate of $\max \left|P^{\prime}(z)\right|$ in terms of the $\max |P(z)|$ on the unit circle $|z|=1$, we have

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n \operatorname{Max}_{|z|=1}|P(z)| . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is a famous result known as Bernstein's Inequality (for reference see [4], [5], [10], [11]). Equality in (1.1) holds if and only if $P(z)$ has all its zeros at the origin. So it is natural to seek improvements under appropriate assumptions on the zeros of $P(z)$.

If $P(z)$ does not vanish in $|z|<1$, then the inequality (1.1) can be replaced by

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| \tag{1.2}
\end{equation*}
$$

Inequality (1.2) was conjectured by Erdos and later proved by Lax [8]. On the other hand, it was shown by Turan [12] that if all the zeros of $P(z)$ lie in $|z|<1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| \tag{1.3}
\end{equation*}
$$

As an extension of (1.2], Malik [9] showed that if $P(z)$ does not vanish in $|z|<K, K \geq 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{1+K} \operatorname{Max}_{|z|=1}|P(z)| \tag{1.4}
\end{equation*}
$$

Recently Dewan and Abdullah [6] have obtained the following generalization of inequality (1.4).

Theorem A. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in $|z|<K, K \geq$ 1, then for $0 \leq r<\rho \leq K$,

$$
\begin{align*}
& \operatorname{Max}_{|z|=\rho}\left|P^{\prime}(z)\right| \leq \frac{n(\rho+K)^{n-1}}{(K+r)^{n}}\left\{1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right) n}{\left(K^{2}-\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right. \tag{1.5}\\
&\left.\quad \times\left(\frac{\rho-r}{K+\rho}\right)\left(\frac{K+r}{K+\rho}\right)^{n-1}\right\} \operatorname{Max}_{|z|=r}|P(z)|
\end{align*}
$$

Inequality (1.3) was generalized by Aziz and Shah [2] by proving the following interesting result.

Theorem B. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros in the disk $|z| \leq K \leq 1$ with s-fold zeros at origin, then for $|z|=1$,

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n+K s}{1+K} \operatorname{Max}_{|z|=1}|P(z)| . \tag{1.6}
\end{equation*}
$$

The result is sharp and the extremal polynomial is

$$
P(z)=z^{s}(z+K)^{n-s}, \quad 0<s \leq n .
$$

Here in this paper,we shall first obtain the following interesting improvement of Theorem A which is also a generalization of inequality (1.4).

Theorem 1.1. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n>1$, having no zeros in $|z|<K, K \geq 1$,then for $0 \leq r \leq \rho \leq K$,
(1.7) $M\left(P^{\prime}, \rho\right) \leq \frac{n(\rho+K)^{n-1}}{(K+r)^{n}}$

$$
\begin{aligned}
& \times\left[1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right) n}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{K+\rho}\right)\left(\frac{K+r}{K+\rho}\right)^{n-1}\right] M(P, r) \\
&-n\left(\frac{r+K}{\rho+K}\right) {\left[\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right.} \\
&\left.\times\left\{\left(\left(\frac{\rho+K}{r+K}\right)^{n}-1\right)-n(\rho-r)\right\}\right] m(P, K) .
\end{aligned}
$$

The result is best possible and equality holds for the polynomial

$$
P(z)=(z+K)^{n}
$$

Next we prove the following result which is a refinement of Theorem B.

Theorem 1.2. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros in the disk $|z| \leq K, K \leq 1$ with t-fold zeros at the origin, then,

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \geq \frac{n+K t}{1+K} M(P, 1)+\frac{n-t}{(1+K) K^{t}} m(P, K) \tag{1.8}
\end{equation*}
$$

The result is sharp and equality holds for the polynomial

$$
P(z)=z^{t}(z+K)^{n-t}, 0<t \leq n .
$$

The following result immediately follows by taking $K=1$ in Theorem 1.2 .
Corollary 1.3. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, with t-fold zeros at the origin, then for $|z|=1$,

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \geq \frac{n+t}{2} M(P, 1)+\frac{n-t}{2} m(P, 1) . \tag{1.9}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $P(z)=(z+K)^{n}$.
Remark 1.4. For $t=0$, Corollary 1.3 reduces to a result due to Aziz and Dawood [1].

2. Lemmas

For the proofs of these theorems, we require the following lemmas. The first result is due to Govil, Rahman and Schmeisser [7].
Lemma 2.1. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having all its zeros in $|z| \geq K \geq$ 1 , then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leq n \frac{\left(n\left|a_{0}\right|+K^{2}\left|a_{1}\right|\right)}{\left(1+K^{2}\right) n\left|a_{0}\right|+2 K^{2}\left|a_{1}\right|} \operatorname{Max}_{|z|=1}|P(z)| . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n which does not vanish in $|z|<K$ where $K>0$,then for $0 \leq r R \leq K^{2}$ and $r \leq R$, we have

$$
\begin{equation*}
\underset{|z|=r}{\operatorname{Max}}|P(z)| \geq\left(\frac{r+K}{R+K}\right)^{n} \operatorname{Max}_{|z|=R}|P(z)|+\left[1-\left(\frac{r+K}{R+K}\right)^{n}\right] \operatorname{Min}_{|z|=K}|P(z)| . \tag{2.2}
\end{equation*}
$$

Here the result is best possible and equality in (2.2) holds for the polynomial $P(z)=(z+K)^{n}$.
Lemma 2.2 is due to Aziz and Zargar [3].
Lemma 2.3. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zeros in $|z|<K, K \geq$ 1 , then for $0 \leq r \leq \rho \leq K$,
(2.3) $\quad M(P, \rho)$

$$
\begin{aligned}
& \leq\left(\frac{K+\rho}{K+r}\right)^{n}\left[1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right) n}{\left(K^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{K+\rho}\right)\left(\frac{K+r}{K+\rho}\right)^{n-1}\right] M(P, r) \\
& \quad-\left[\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)(r+K)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\left\{\left(\left(\frac{\rho+K}{r+K}\right)^{n}-1\right)-n(\rho-r)\right\}\right] m(P, K) .
\end{aligned}
$$

The result is best possible with equality for the polynomial $P(z)=(z+K)^{n}$.

Proof of Lemma 2.3. Since $P(z)$ has no zeros in $|z|<K, K \geq 1$, therefore the polynomial $T(z)=P(t z)$ has no zeros in $|z|<\frac{K}{t}$, where $0 \leq t \leq K$. Using Lemma 2.1 for the polynomial $T(z)$, with K replaced by $\frac{K}{t} \geq 1$, we get

$$
\operatorname{Max}_{|z|=1}\left|T^{\prime}(z)\right| \leq n\left\{\frac{\left(n\left|a_{0}\right|+\frac{K^{2}}{t^{2}}\left|t a_{1}\right|\right)}{\left(1+\frac{K^{2}}{t^{2}}\right) n\left|a_{0}\right|+2 \frac{K^{2}}{t^{2}}\left|t a_{1}\right|}\right\} \underset{|z|=1}{\operatorname{Max}}|T(z)|,
$$

which implies

$$
\begin{equation*}
\operatorname{Max}_{|z|=t}\left|P^{\prime}(z)\right| \leq n\left\{\frac{\left(n\left|a_{0}\right| t+K^{2}\left|a_{1}\right|\right)}{\left(t^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} t\left|a_{1}\right|}\right\} \operatorname{Max}_{|z|=t}|P(z)| . \tag{2.4}
\end{equation*}
$$

Now for $0 \leq r \leq \rho \leq K$ and $0 \leq \theta<2 \pi$, by (2.4) we have

$$
\begin{align*}
\left|P\left(\rho e^{i \theta}\right)-P\left(r e^{i \theta}\right)\right| & \leq \int_{r}^{\rho}\left|P^{\prime}\left(t e^{i \theta}\right)\right| d t \tag{2.5}\\
& \leq \int_{r}^{\rho} n\left\{\frac{\left(n\left|a_{0}\right| t+K^{2}\left|a_{1}\right|\right)}{\left(t^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} t\left|a_{1}\right|}\right\} \operatorname{Max}_{|z|=t}|P(z)|
\end{align*}
$$

Using Lemma 2.2 with $R=t$ and noting that $0 \leq r \leq t \leq \rho \leq K$ and $0 \leq r t \leq K^{2}$, it follows that

$$
\begin{aligned}
\mid P\left(\rho e^{i \theta}\right)- & P\left(r e^{i \theta}\right) \left\lvert\, \leq \int_{r}^{\rho} n\left\{\frac{\left(n\left|a_{0}\right| t+K^{2}\left|a_{1}\right|\right)}{\left(t^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} t\left|a_{1}\right|}\right\}\right. \\
\left(\frac{t+K}{r+K}\right)^{n}\{M(P, r)- & \left.\left(1-\left(\frac{r+K}{t+K}\right)^{n}\right) m(P, K)\right\} d t \\
& \leq n\left\{\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\} \\
& \times \int_{r}^{\rho}\left(\frac{t+K}{r+K}\right)^{n}\left\{M(P, r)-\left(1-\left(\frac{r+K}{t+K}\right)^{n}\right) m(P, K)\right\} d t
\end{aligned}
$$

This gives for $0 \leq r \leq \rho \leq K$,

$$
\begin{aligned}
& M(P, \rho) \\
& \leq\left[1+\frac{n(K+\rho)}{(K+r)^{n}}\left\{\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\} \int_{r}^{\rho}(K+t)^{n-1} d t\right] M(P, r) \\
& \quad-n\left\{\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\} \int_{r}^{\rho}\left(\left(\frac{t+K}{r+K}\right)^{n}-1\right) d t m(P, k) \\
& \leq\left[1-\left\{\frac{(K+\rho)\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\}\right. \\
& \left.\quad+\left\{\frac{(K+\rho)\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\}\left(\frac{K+\rho}{K+r}\right)^{n}\right] M(P, r) \\
& \quad-n\left[\left\{\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\} \int_{r}^{\rho}\left(\frac{(t+K)^{n-1}}{(r+K)^{n-1}}-1\right) d t\right] m(P, k)
\end{aligned}
$$

$$
\begin{aligned}
< & \frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right)}{\left(K^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|} \\
& \left.+\left\{1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right)}{\left(K^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\}\left(\frac{K+\rho}{K+r}\right)^{n}\right] M(P, r) \\
& -n\left\{\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|} \int_{r}^{\rho}\left(\left(\frac{t+K}{r+K}\right)^{n-1}-1\right) d t\right\} m(P, k) \\
= & \left(\frac{K+\rho}{K+r}\right)^{n}\left[1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right)}{\left(K^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\left\{1-\left(\frac{K+r}{K+\rho}\right)^{n}\right\}\right] M(P, r) \\
& -n\left\{\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right\} \frac{1}{(r+K)^{n-1}} \\
& \times\left\{\frac{(\rho+K)^{n}-(r+K)^{n}}{n}-(\rho-r)\right\} m(P, k) \\
= & \left(\frac{K+\rho}{K+r}\right)^{n}\left[1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right)}{\left(K^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right. \\
& \left.\times \frac{(\rho-r)}{(K+\rho)\left\{1-\frac{K+r}{K+\rho}\right\}}\left\{1-\left(\frac{K+r}{K+\rho}\right)^{n}\right\}\right] M(P, r) \\
& -\left[\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right. \\
& \left.\times(r+K)\left\{\left\{\left(\frac{\rho+K}{r+K}\right)^{n}-1\right\}-n(\rho-r)\right\}\right] m(P, k) \\
\leq & \left(\frac{K+\rho}{K+r}\right)^{n}\left[1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right) n}{\left(K^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{K+\rho}\right)\left(\frac{K+r}{K+\rho}\right)^{n-1}\right] M(P, r) \\
& -\left[\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)(r+K)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\left\{\left(\left(\frac{\rho+K}{r+K}\right)^{n}-1\right)-n(\rho-r)\right\}\right] m(P, K)
\end{aligned}
$$

which proves Lemma 2.3 .

3. Proof of the Theorems

Proof of Theorem 1.1. Since the polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ has no zeros in $|z|<K$, where $K \geq 1$, therefore it follows that $F(z)=P(\rho z)$ has no zero in $|z|<\frac{K}{\rho}, \frac{K}{\rho} \geq 1$. Applying inequality 1.4) to the polynomial $F(z)$, we get

$$
\operatorname{Max}_{|z|=1}\left|F^{\prime}(z)\right| \leq \frac{n}{1+\frac{K}{\rho}} \operatorname{Max}_{|z|=1}|F(z)|,
$$

which gives

$$
\begin{equation*}
\operatorname{Max}_{|z|=\rho}\left|P^{\prime}(z)\right| \leq \frac{n}{\rho+K} \operatorname{Max}_{|z|=\rho}|P(z)| . \tag{3.1}
\end{equation*}
$$

Now if $0 \leq r \leq \rho \leq K$, then from (3.1) it follows with the help of Lemma 2.3 that

$$
\begin{aligned}
& \operatorname{Max}_{|z|=\rho}\left|P^{\prime}(z)\right| \leq \frac{n(K+\rho)^{n-1}}{(K+r)^{n}}\left[1-\frac{K(K-\rho)\left(n\left|a_{0}\right|-K\left|a_{1}\right|\right) n}{\left(K^{2}+\rho^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right. \\
&\left.\times\left(\frac{\rho-r)}{K+\rho}\right)\left(\frac{K+r}{K+\rho}\right)^{n-1}\right] M(P, r)-n\left(\frac{r+K}{\rho+K}\right)\left[\frac{\left(n\left|a_{0}\right| \rho+K^{2}\left|a_{1}\right|\right)}{\left(\rho^{2}+K^{2}\right) n\left|a_{0}\right|+2 K^{2} \rho\left|a_{1}\right|}\right. \\
& \times\left.\left\{\left(\left(\frac{\rho+K}{r+K}\right)^{n}-1\right)-n(\rho-r)\right\}\right] m(P, K),
\end{aligned}
$$

which completes the proof of Theorem 1.1 .
Proof of Theorem [1.2. If $m=\operatorname{Min}_{|z|=K}|P(z)|$, then $m \leq|P(z)|$ for $|z|=K$, which gives $m\left|\frac{z}{K}\right|^{t} \leq|P(z)|$ for $|z|=K$. Since all the zeros of $P(z)$ lie in $|z| \leq K \leq 1$, with t-fold zeros at the origin, therefore for every complex number α such that $|\alpha|<1$, it follows (by Rouches' Theorem for $m>0$) that the polynomial $G(z)=P(z)+\frac{\alpha m}{K^{t}} z^{t}$ has all its zeros in $|z| \leq K, K \leq 1$ with t-fold zeros at the origin,so that we can write

$$
\begin{equation*}
G(z)=z^{t} H(z) \tag{3.2}
\end{equation*}
$$

where $H(z)$ is a polynomial of degree $n-t$ having all its zeros in $|z| \leq K, K \leq 1$.
From (3.2), we get

$$
\begin{equation*}
\frac{z G^{\prime}(z)}{G(z)}=t+\frac{z H^{\prime}(z)}{H(z)} \tag{3.3}
\end{equation*}
$$

If $z_{1}, z_{2}, \ldots, z_{n-t}$ are the zeros of $H(z)$, then $\left|z_{j}\right| \leq K \leq 1$ and from (3.3), we have

$$
\begin{align*}
\operatorname{Re}\left\{\frac{e^{i \theta} G^{\prime}\left(e^{i \theta}\right)}{G\left(e^{i \theta}\right)}\right\} & =t+\operatorname{Re}\left\{\frac{e^{i \theta} H^{\prime}\left(e^{i \theta}\right)}{H\left(e^{i \theta}\right)}\right\} \tag{3.4}\\
& =t+\operatorname{Re} \sum_{j=1}^{n-t} \frac{e^{i \theta}}{e^{i \theta}-z_{j}} \\
& =t+\sum_{j=1}^{n-t} \operatorname{Re}\left(\frac{1}{1-z_{j} e^{-i \theta}}\right)
\end{align*}
$$

for points $e^{i \theta}, 0 \leq \theta<2 \pi$ which are not the zeros of $H(z)$.
Now, if $|w| \leq K \leq 1$, then it can be easily verified that

$$
\operatorname{Re}\left(\frac{1}{1-w}\right) \geq \frac{1}{1+K}
$$

Using this fact in (3.4), we see that

$$
\begin{aligned}
\left|\frac{G^{\prime}\left(e^{i \theta}\right)}{G\left(e^{i \theta}\right)}\right| & \geq \operatorname{Re}\left(\frac{e^{i \theta} G^{\prime}\left(e^{i \theta}\right)}{G\left(e^{i \theta}\right)}\right) \\
& =t+\sum_{j=1}^{n-t} \operatorname{Re}\left(\frac{1}{1-z_{j} e^{-i \theta}}\right) \geq t+\frac{n-t}{1+K}
\end{aligned}
$$

which gives,

$$
\begin{equation*}
\left|G^{\prime}\left(e^{i \theta}\right)\right| \geq \frac{n+t K}{1+K}\left|G\left(e^{i \theta}\right)\right| \tag{3.5}
\end{equation*}
$$

for points $e^{i \theta}, 0 \leq \theta<2 \pi$ which are not the zeros of $G(z)$. Since inequality 3.5 is trivially true for points $e^{i \theta}, 0 \leq \theta<2 \pi$ which are the zeros of $P(z)$, it follows that

$$
\begin{equation*}
\left|G^{\prime}(z)\right| \geq \frac{n+t K}{1+K}|G(z)| \quad \text { for } \quad|z|=1 \tag{3.6}
\end{equation*}
$$

Replacing $G(z)$ by $P(z)+\frac{\alpha m}{K^{t}} z^{t}$ in 3.6, then we get

$$
\begin{equation*}
\left|P^{\prime}(z)+\frac{\alpha t m}{K^{t}} z^{t-1}\right| \geq \frac{n+t K}{1+K}\left|P(z)+\frac{\alpha m}{K^{t}} z^{t}\right| \quad \text { for } \quad|z|=1 \tag{3.7}
\end{equation*}
$$

and for every α with $|\alpha|<1$. Choosing the argument of α such that

$$
\left|P(z)+\frac{\alpha m}{K^{t}} z^{t}\right|=|P(z)|+|\alpha| \frac{m}{K^{t}} \quad \text { for } \quad|z|=1
$$

it follows from (3.7) that

$$
\left|P^{\prime}(z)\right|+\frac{t|\alpha| m}{K^{t}} \geq \frac{n+t K}{1+K}\left[|P(z)|+|\alpha| \frac{m}{K^{t}}\right] \quad \text { for } \quad|z|=1 .
$$

Letting $|\alpha| \rightarrow 1$, we obtain

$$
\begin{aligned}
\left|P^{\prime}(z)\right| & \geq \frac{n+t K}{1+K}|P(z)|+\left[\frac{n+t K}{1+K}-t\right] \frac{m}{K^{t}} \\
& =\frac{n+t K}{1+K}|P(z)|+\frac{n-t}{1+K} \frac{m}{K^{t}} \quad \text { for } \quad|z|=1
\end{aligned}
$$

This implies

$$
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n+t K}{1+K} \operatorname{Max}_{|z|=1}|P(z)|+\frac{n-t}{(1+K) K^{t}} \operatorname{Min}_{|z|=K}|P(z)|
$$

which is the desired result.

References

[1] A. AZIZ AND Q.M. DAWOOD, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54 (1988), 306-313.
[2] A. AZIZ AND W.M. SHAH, Inequalities for a polynomial and its derivative, Math. Inequal. and Applics., 7(3) (2004), 379-391.
[3] A. AZIZ and B.A. ZARGAR, Inequalities for a polynomial and its derivative, Math. Inequal. and Applics., 1(4) (1998), 543-550.
[4] S. BERNSTEIN, Sur l' ordre de la meilleure approximation des fonctions continues pardes polynômes de degré donné, Mémoires de l'Académie Royale de Belgique, 4 (1912), 1-103.
[5] S. BERNSTEIN, Leçons sur les propriétés extrémales et la meilleure d'une fonctions réella, Paris 1926.
[6] K.K. DEWAN and A. MIR, On the maximum modulus of a polynomial and its derivatives, International Journal of Mathematics and Mathematical Sciences, 16 (2005), 2641-2645.
[7] N.K. GOVIL, Q.I. RAHMAN AND G. SCHMEISSER, On the derivative of a polynomial, Illinois J. Math., 23 (1979), 319-329.
[8] P.D. LAX, Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Amer. Math. Soc. (N.S), 50 (1944), 509-513.
[9] M.A. MALIK, On the derivative of a polynomial, J. London Math. Soc., 1 (1969), 57-60.
[10] A.C. SCHAFFER, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47 (1941), 565-579.
[11] G.V. MILOVANOVIĆ, D.S. MITRINOVIĆ and Th.M. RASSIAS, Topics in Polynomials: Extremal Problems, Inequalities, Zeros,World Scientific, Singapore, 1994.
[12] P. TURÁN, Über die Ableitung fon Polynomen, Compositio Math., 7 (1939-40), 89-95.

