ON OPEN PROBLEMS OF F. QI

BENHARRAT BELAIDI, ABDALLAH EL FARISSI AND
ZINELAABIDINE LATREUCH

Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem
B. P. 227 Mostaganem, Algeria
EMail: belaidi@univ-mosta.dz elfarissi.abdallah@yahoo.frz.latreuch@gmail.com

Received: 07 May, 2008
Accepted: 28 September, 2009
Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 26D15.

Key words: Inequality, Sum of power, Exponential of sum, Nonnegative sequence, Integral
Inequality.
Abstract: In this paper, we give a complete answer to Problem 1 and a partial answer to

Problem 2 posed by F. Qi ir?] and we propose an open problem.
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1. Introduction

Before, we state our results, for our own convenience, we introduce the following

notations:

(1.1) [0,00)" £ [0,00) x [0,00) x ... x [0, 00)
n%es

and

(1.2) (0,00)" £ (0, 00) x (0,00) x ... x (0,00)
nt?r;es

for n € N, whereN denotes the set of all positive integers.
In [2], F. Qi proved the following:

Theorem A. For (zy1, s, ...,2,) € [0,00)" andn > 2, inequality

(1.3) — ZI exp (Z a:)

is valld Equallty in(1.3) holds if z; = 2 for some glver1 <nandz; =0 for
all 1 < nwith j # 4. Thus, the constarif— in (1.3) is the best possible.

Theorem B. Let{x;};~, be a nonnegative sequence such thgt | z; < co. Then

(1.4) %2 N xf exp <Z xz) :

Equality in(1.4) holds ifz; = 2 for some giveri € N andz; = 0 for all j € N with
j #i. Thus, the constarif in (1.4) is the best possible.

W
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In the same paper, F. Qi posed the following two open problems:

Problem 1.1. For (1, 23, ..., z,) € [0,00)" andn > 2, determine the best possible
constantsy,, A\, € Randg, > 0, u,, < oo such that

(1.5) B zn: zf" < exp (i :6) < fin zn: ).
1=1 =1 =1

Problem 1.2. What is the integral analogue of the double inequality))?
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purpose of this paper is to give a complete answer to this problem. Also, we give a

partial answer to Problem 2. The method used in this paper will be quite different
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is valid. Equality in(1.7) holds ifz; = 2 for all 1 < ¢ < n. Thus, the constant

n~1 < in (1.7) is the best possible.

Theorem 1.3. Let{z;};-, be a nonnegative sequence such thjt, z; < co and
p > 1 be areal number. Then

P & P <
(1.8) p 2 x; < exp (sz)

Equality in(1.8) holds ifz; = p for some giveni € N andz; = 0 for all j € N with
j #i. Thus, the constan?é in (1.8) is the best possible.

Remarkl. In general, we cannot findl < 1, < oo and),, € R such that

exp <i x) < fin i .
=1 =1

Proof. We suppose that there exi$ts< i, < oo and\, € R such that

exp (Z :c) <o Y "
=1 =1
Then for(zy, 1, ..., 1), we obtain asg; — +oo,

1<, (n -1+ xln) e " — 0.

This is a contradiction. O]
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Theorem 1.4.Let p > 0 be a real number(zy,zs,...,x,) € [0,00)" andn > 2
such that) < z; < pforall 1 < i < n. Then the inequality

(2.9) exp (Zn: %) < %penp zn: o
=1 i=1

is valid. Equality in(1.9) holds ifz; = p for all 1 < i < n. Thus, the constarff ™
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Remark2. Letp > 0 be a real numbefy, xs,...,x,) € [0,00)" andn > 2 such
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or

eP P«
(1.13) p — ||z|; < exp |z, ,

wherex = (z1, 23, ..., 7,,) and||-|| , denotes the-norm.
Remarks. Inequality(1.8) can be rewritten as
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which is equivalent to inequalityl . 12) for z = (z1, 2o, ...) € [0,00)™.
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Contents
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is valid. Equality in(1.17) holds if f(x) = ;2. Thus, the constarﬁé (b—a)’ tin

(1.17) is the best possible.
Theorem 1.6.Letx > 0. Then

(1.18)

is valid, wherel" denotes the well-known Gamma function.

I(x) <

X

2x+lx1‘71

eil)
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2. Lemmas

Lemma 2.1. For z € [0, 00) andp > 0, the inequality

ep
(21) —pxp < 6
p
is valid. Equality in £.1) holds ifxz = p. Thus, the constar% in (2.1) is the best S -
poss|b|e B. Belaidi, A. El Farissi and
Z. Latreuch
Proof. Letting f (xr) = plnz — = on the set(0,c0), it is easy to obtain that the vol. 10, iss. 3, art. 90, 2009
function f has a maximal point at = p and the maximal value equafs(p) =
plnp — p. Then, we obtair(2.1). Itis clear that the inequality2.1) also holds at _
z = 0. O Title Page
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Proof. (i) For the proof, we use mathematical induction. First, we prove) for
n = 2. We have for any(z,, ) # (0,0)

15 T2

(2.4) <1 and <1.
T1 + o T+ 2o
Then, byp > 1 we get
p p . Qi
(25) L1 < L1 and L2 < L2 . an gg;?dff?:;rg;?;;a%ld
i ) = T1 + X T+ X9 = 1+ To Z. Latreuch
o ) vol. 10, iss. 3, art. 90, 2009
By addition from(2.5), we obtain
< I )p + ( o) )p < I 4 T2 Title Page
T+ T T1 + X9 Soi e w1 A Contents
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(2.6) o+ ah < (g + 22)”. < >
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Go Back
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We have by(2.6)

n+1 n p n p
(2.9) <Z Z‘Z> (Z z; + mn+1> > <Z xz> + b

and by(2.7) and(2.9), we obtain

n+1 n p n+1
(2.10) Za: = Zx +ab < (le> +ab. < (Z%)
i=1

Then for alln > 2, (2.2) holds.

(i) For (x1, g, ..., 2,) € [0,00)",0 < p < 1 andn > 2, we have

(2.11) (;x> = <i:1 ng) .

By using the concavity of the function— x? (z > 0, 0 < p < 1), we obtain from
(2.11)

n p n n n
(2.12) (Z xl> = ( n—) > Z nf;xf Pt Z z?.
=1 =1 =1

Hence(2.3) holds. O
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3. Proofs of the Theorems

We are now in a position to prove our theorems.

Proof of Theorem..1. For (z1,z9,...,2,) € [0,00)" andp > 1, we putz =
>, z;. Then by(2.1), we have

n p n
eP On Open Problems of F. Qi
(3.2) — E x; | <exp E x; B. Belaidi, A. El Farissi and
p =1 =1

Z. Latreuch
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Contents
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p
(3.2) e_p (Z xz> < exp (Z xz> « 44
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Full Screen
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It follows that
n pp n 7
s < © np - p.
exp (; x ) - e ; x,

The proof of Theorem..4is completed. O

Proof of Theoreni.5. Let0 < p < 1. By Holder’s inequality, we have
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It is clear that

T

e’ > T, —2t _ €

The proof of Theorem..6is completed. O
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4. Open Problem

Problem 4.1. For p > 1 a real number, determine the best possible constaatR
such that
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