Journal of Inequalities in Pure and Applied Mathematics

MULTIVARIATE VERSION OF A JENSEN-TYPE INEQUALITY

ROBERT A. AGNEW
Deerfield, IL 60015-3007, USA.
EMail: raagnew@aol.com

Abstract

A univariate Jensen-type inequality is generalized to a multivariate setting.

2000 Mathematics Subject Classification: Primary 26D15.
Key words: Convex functions, Tchebycheff methods, Jensen's inequality.

Contents

1 Introduction 3
2 Main Result 4
3 Examples 6
References6

Multivariate Version of a Jensen-Type Inequality

Robert A. Agnew

J. Ineq. Pure and Appl. Math. 6(4) Art. 120, 2005 http://jipam.vu.edu.au

1. Introduction

The following theorem was proved in [1], using Tchebycheff methods [4], [5], to extend a result obtained in [2] for the Laplace transform. It was later reproved in [3], [6], [7] using Jensen's inequality.

Theorem 1.1. Let X be a nonnegative random variable with $E(X)=\mu>0$ and $E\left(X^{2}\right)=\lambda<\infty$. Suppose that $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=0$ and $g(x)=f(x) / x$ convex on $(0, \infty)$. Then, $E(f(X)) \geq \mu g(\lambda / \mu)=$ $\left(\mu^{2} / \lambda\right) f(\lambda / \mu)$ and the bound is sharp.

We next provide a natural multivariate generalization of Theorem 1.1, using the same approach as [1], followed by examples to illustrate its application.

Multivariate Version of a Jensen-Type Inequality

Robert A. Agnew

J. Ineq. Pure and Appl. Math. 6(4) Art. 120, 2005

2. Main Result

Let $S=(0, \infty)^{n}$ and let g_{1}, \ldots, g_{n} be real-valued functions on S. For any column vector $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in S$, let $f(x)=\sum_{i=1}^{n} x_{i} g_{i}(x)$ and let e_{i} denote the $i^{\text {th }}$ unit column vector in \mathbb{R}^{n}.
Theorem 2.1. Let g_{1}, \ldots, g_{n} be convex on S, and let $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ be a random column vector in S with $E(X)=\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)^{T}$ and $E\left(X X^{T}\right)=$ $\Sigma+\mu \mu^{T}$ for covariance matrix Σ. Then,

$$
\begin{equation*}
E(f(X)) \geq \sum_{i=1}^{n} \mu_{i} g_{i}\left(\frac{\sum e_{i}}{\mu_{i}}+\mu\right) \tag{2.1}
\end{equation*}
$$

and the bound is sharp.
Proof. By convexity, for any $\xi_{i} \in S$, there exists a $b_{i}\left(\xi_{i}\right) \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
g_{i}(x) \geq g_{i}\left(\xi_{i}\right)+b_{i}\left(\xi_{i}\right)^{T}\left(x-\xi_{i}\right) \tag{2.2}
\end{equation*}
$$

for all $x \in S$, i.e., there exists a supporting hyperplane at ξ_{i}. Hence,

$$
\begin{align*}
E(f(X)) & =\sum_{i=1}^{n} E\left(X_{i} g_{i}(X)\right) \tag{2.3}\\
& \geq \sum_{i=1}^{n} E\left(X_{i}\left(g_{i}\left(\xi_{i}\right)+b_{i}\left(\xi_{i}\right)^{T}\left(X-\xi_{i}\right)\right)\right) \\
& \geq \sum_{i=1}^{n} \mu_{i}\left(g_{i}\left(\xi_{i}\right)+b_{i}\left(\xi_{i}\right)^{T}\left(E\left(\frac{X X_{i}}{\mu_{i}}\right)-\xi_{i}\right)\right)
\end{align*}
$$

Multivariate Version of a Jensen-Type Inequality

Robert A. Agnew

Title Page
Contents
Go Back
Close
Quit
Page 4 of 8

But

$$
E\left(X X_{i}\right)=E\left(X X^{T} e_{i}\right)=E\left(X X^{T}\right) e_{i}=\Sigma e_{i}+\mu \mu_{i} .
$$

Then, (2.2) and (2.3) together imply that

$$
\xi_{i}=E\left(\frac{X X_{i}}{\mu_{i}}\right)=\frac{\Sigma e_{i}}{\mu_{i}}+\mu
$$

yields the maximum bound which is obviously attained when X is concentrated at μ.
Theorem 2.1 is a true multivariate extension as the following examples illustrate. As indicated in [2] for the Laplace transform, certain extensions are only nominally multivariate and fall within the domain of Theorem 1.1 because the random variables are combined in a univariate linear combination.

Multivariate Version of a Jensen-Type Inequality

Robert A. Agnew

J. Ineq. Pure and Appl. Math. 6(4) Art. 120, 2005

3. Examples

Example 3.1. Let $g_{i}(x)=\alpha_{i}+\beta_{i}^{T} x$ be linear with $\alpha_{i} \in \mathbb{R}$ and $\beta_{i} \in \mathbb{R}^{n}$. Then

$$
f(x)=\sum_{i=1}^{n} x_{i} g_{i}(x)=\sum_{i=1}^{n} x_{i}\left(\alpha_{i}+\beta_{i}^{T} x\right)
$$

is a general quadratic function which can also be written as $f(x)=\alpha^{T} x+$ $x^{T} B x$ where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{T}$ and $B=\left[\beta_{1}, \ldots, \beta_{n}\right]^{T}$. Then we have

$$
\begin{aligned}
E(f(X)) & =E\left(\sum_{i=1}^{n} X_{i}\left(\alpha_{i}+\beta_{i}^{T} X\right)\right) \\
& =\sum_{i=1}^{n}\left(\alpha_{i} \mu_{i}+\beta_{i}^{T}\left(\Sigma e_{i}+\mu \mu_{i}\right)\right) \\
& =\sum_{i=1}^{n} \mu_{i}\left(\alpha_{i}+\beta_{i}^{T}\left(\frac{\Sigma e_{i}}{\mu_{i}}+\mu\right)\right) \\
& =\alpha^{T} \mu+\mu^{T} B \mu+\operatorname{tr}(B \Sigma)
\end{aligned}
$$

so the Theorem 2.1 bound is, not surprisingly, exact in this general quadratic case.

Example 3.2. Let $g_{i}(x)=\rho_{i} \prod_{j=1}^{n} x_{j}^{-\gamma_{i j}}$ with $\rho_{i}>0$ and $\gamma_{i j}>0$. Here, the g_{i} might represent Cournot-type price functions (inverse demand functions) for quasi-substitutable products where x_{i} is the supply of product i and $g_{i}\left(x_{1}, \ldots, x_{n}\right)$ is the equilibrium price of product i, given its supply and the supplies of its alternates. Then, $x_{i} g_{i}(x)$ represents the revenue from product i and $f(x)=$

Multivariate Version of a Jensen-Type Inequality

Robert A. Agnew

J. Ineq. Pure and Appl. Math. 6(4) Art. 120, 2005 http://jipam.vu.edu.au
$\sum_{i=1}^{n} x_{i} g_{i}(x)$ represents total market revenue for the ensemble of products. In this context, we would normally expect $\gamma_{i j} \in(0,1)$ for viable products. Then, with probabilistic supplies, we have

$$
E(f(X)) \geq \sum_{i=1}^{n} \mu_{i} g_{i}\left(\frac{\sum e_{i}}{\mu_{i}}+\mu\right)=\sum_{i=1}^{n} \mu_{i} \rho_{i} \prod_{j=1}^{n}\left(\frac{\sigma_{i j}}{\mu_{i}}+\mu_{j}\right)^{-\gamma_{i j}}
$$

where $\sigma_{i j}$ is the $i{ }^{\text {th }}$ element of Σ. This example demonstrates that Theorem 2.1 has an interesting application in economic oligopoly theory.

In Example 3.2, $g_{i}(x)=e^{h_{i}(x)}$ where

$$
h_{i}(x)=\ln \rho_{i}-\sum_{j=1}^{n} \gamma_{i j} \ln x_{j}
$$

is convex on S. In general, if $k: \mathbb{R} \rightarrow \mathbb{R}$ is convex nondecreasing and $h: S \rightarrow$ \mathbb{R} is convex, then $g(x)=k(h(x))$ is convex on S since

$$
\begin{aligned}
k\left(h\left(\lambda x^{(1)}+(1-\lambda) x^{(2)}\right)\right) & \leq k\left(\lambda h\left(x^{(1)}\right)+(1-\lambda) h\left(x^{(2)}\right)\right) \\
& \leq \lambda k\left(h\left(x^{(1)}\right)\right)+(1-\lambda) k\left(h\left(x^{(2)}\right)\right)
\end{aligned}
$$

for any $x^{(1)}, x^{(2)} \in S$ and $\lambda \in[0,1]$. Other examples satisfying Theorem 2.1 can be generated by composing the linear functions of Example 3.1 with convex nondecreasing functions like $k(u)=e^{u}, k(u)=u+\sqrt{u^{2}+1}=e^{\sinh ^{-1} u}$, or $k(u)=\max (0, u)$.

Multivariate Version of a Jensen-Type Inequality

Robert A. Agnew

References

[1] R.A. AGNEW, Inequalities with application in economic risk analysis, J. Appl. Prob., 9 (1972), 441-444.
[2] D. BROOK, Bounds for moment generating functions and for extinction probabilities, J. Appl. Prob., 3 (1966), 171-178.
[3] B. GULJAŠ, C.E.M. PEARCE AND J. PEČARIĆ, Jensen's inequality for distributions possessing higher moments, with applications to sharp bounds for Laplace-Stieltjes transforms, J. Austral. Math. Soc. Ser. B, 40 (1998), 80-85.
[4] S. KARLIN AND W.J. STUDDEN, Tchebycheff Systems: with Applications in Analysis and Statistics, Wiley Interscience, 1966.
[5] J.F.C. KINGMAN, On inequalities of the Tchebychev type, Proc. Camb. Phil. Soc., 59 (1963), 135-146.
[6] C.E.M. PEARCE AND J.E. PEČARIĆ, An integral inequality for convex functions, with application to teletraffic congestion problems, Math. of Opns. Res., 20 (1995), 526-528.
[7] A.O. PITTENGER, Sharp mean-variance bounds for Jensen-type inequalities, Stat. \& Prob. Letters, 10 (1990), 91-94.

Multivariate Version of a Jensen-Type Inequality

Robert A. Agnew

Title Page
Contents
Go Back
Close
Quit 8 of 8

J. Ineq. Pure and Appl. Math. 6(4) Art. 120, 2005

