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ABSTRACT. It is the purpose of the present paper to obtain some sufficient conditiops for
valently starlikeness for a certain class of functions which are analytic in the open unk disk
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1. INTRODUCTION

Let A(p) be the class of functions of the form:

f(z) =2+ Z a,z" (peN={1,2,3,...}),
n=p+1
which are analyticint = {z € C: |z| < 1}.
A function f(z) € A(p) is said to be p-valently starlike if and only if

f'(z) }

Re< z >0 (z€F).
SEIRER

We denote by5(p) the subclass afi(p) consisting of functions which arevalently in £ (see,

e.g., Goodmari [1]).

Let
(1.1) f(z) = Z—{—ianz”.
A function f(z) of the form [1.1) is said to bej:f)nvex inE if it is regular,
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and

(1.2) Re (a <1 + z%) +(1 — a)z%) >0

forall z in E. The set of all such functions is denoteddy C'V, wherea is a real number. Of
course, ifa = 1, then anv—convex function is convex; and i = 0, ana—convex function is
starlike. Thus the sets — C'V give a “continuous” passage from convex functions to starlike
functions. Sakaguchi considers functions of the form

f(z) =2+ Z anz",

n=p+1

wherep is a positive integer, and he imposes the condition

2f"(z) f'(z)
(2.3) Re{1+ 7o) +k:zf(z)}20

for z in E. He proved that it = —1, there is only one function that satisfi¢s {1.3), namely
f(z) = 2. If =1 < k < 0,then f(z) is p-valent convex; and i < k, then f(z) is p-valent
starlike. We can pass fro.3) back1.2) if we dividelbyk > 0 and setv = + [6]. We
denote byS(p, k) the subclass!(p) consisting of functions which satisfy the condition {1.3).

Obradovic and Owa [7] have obtained a sufficient condition for starlikeneg&:0fc A(1)
which satisfies a certain condition for the modulus of

zf"(2)
1+ 5755
z2f'(z)
f(z)
we recall their result as:
Theorem 1.1.1f f(z) € A(1) satisfies
zf"(2) zf'(2)
1+ <K ze FE),
‘ 72) | P

where K = 1.2849..., thenf(z) € S(1).
Nunokawal[4] improved Theorem 1.1 by proving
Theorem 1.2.1f f(2) € A(p), and if

2'C)| |28 1

1+ 702 15 ];log(élep’ ) (z€b),

thenf(z) € S(p).

2. PRELIMINARIES

In order to obtain our main result, we need the following lemma attributed to Jack [2] (given
also by Miller and Mocanu [3]).

Lemma 2.1. Letw(z) be analytic inE with w(0) = 0. If |w(z)]| attains its maximum value in
the circle|z| = r < 1 at a pointz,, then we can writeyw'(2y) = kw(zy), wherek is a real
number and; > 1.

Making use of Lemmpa 2] 1,we first prove
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Lemma 2.2. Letq(z) be analytic inE with ¢(0) = p and suppose that
/
(2.1) Re { =4 (Z)Q} <
[q(2)]
thenRe{q(z)} > 0in E.

Proof. Let us put

q(z)=p{<%+%A) it—zgjt (%—%A) 11—38}

where0 < A < 1.
Thenw(z) is analytic inE with w(0) = 0 and by an easy calculation, we have

q(z) 2 (Aw?(z) + 2w(z) + /\)zw’(z).

q(z)> p (w2(z) + 22 w(z) 4 1)2

If we suppose that there exists a paifitc £ such thatmax,. ., [w(z)| = |w(z)| = 1, then,
from Lemmd 2.1, we haveyw’(z0) = kw(zo), (k> 1).
Puttingw(z,) = ¢, we find that

7 (20) _2 Aw?(zo)w' (20) 20 + 2w (z0)w'(20) 20 + Mw'(20) 20

(€ E,0< A<,

p(A+1)

1+=2

PP [w(z0) + 2Xw(z0) + 1
2k ACH 4 220 4 Al
T p (€20 4 2)\eif 4 1)

9 ()\631'9 + 2620 4 /\eiG) (6721'9 + 2\ + 1)2
TP (0 4 2xei? 4 1) ' (€20 4 2)e=10 4+ 1)?
~k Xcos30 + (4N 4 2) cos 20 + (11X 4 4X%) cos 6 + (8X* + 2)
T 4 (X + cos0)*
k(14 Acosf) (A + cos )
p (A + cos )
k14 Acost
T (A + cos )’
so that

Re{ q (z0) } E 14 Xcos@ k A4 Acos+1— )\
2 et
" p (A+cosh)® p (A + cos )

_@{ - 1—)\2}
p L(A+cosb) (X +cosh)?

1 1
> - —).
D (/\ + 1>
This contradicts| (2]1). Therefore, we haug(z)| < 1in E, and it follows thafRe {¢(z)} > 0
in E. This completes our proof of Lemma 2.2. O
If we take X = 1 in Lemmd 2.2, then we have the following Lemmal 2.3 by Nunokawa [5].
Lemma 2.3. Letg(z) be analytic inE with ¢(0) = p and suppose that

re{ X< Gen).

la(=))" )~ 2p
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ThenRe{q(2)} > 0in E.

3. A CRITERION FOR p-VALENTLY STARLIKENESS
Theorem 3.1.Let f(z) € A(p), f(2) #0,in 0 < |z| < 1 and suppose that

1" ! /
3.1 Re< 1+ =2 <1+—(—) ze F).
3D £(2) +kf'((z))>]2 E+1\2p ( )

Thenf(z) € S(p, k).

Proof. Let us put

RN L OO
q(z)—k+1{1+ f’(z)+k f(z)} (k>0).

Then,q(z) is analytic inE with ¢(0) = p, ¢(z) # 0in E. We have

@\ @\ e £(2) (2 (f'<z))’
q(z) (zf’()) +<kz ) B ()“( 702 >+kf(z +hz

- f( - () ()
q(2) 142 + k2L 1+ 25 + k2L f(z)

f’(Z)

f(Z)

Then, we obtain

2) )Y\
q(2) 1+Zf’(z +ka(2 -1 kz(f(Z)) +z(f’(2)>
(0) T 1+ AL@ g pla L) | L@
¢ T2 TR 7 TR
2o (@Y e\ |
z {(f’(@) +k<f(Z)>} 1

f"(2) f(2) ’
142 o) + kz

z

=1+

or

2 (@), @Y IO 2 (@), @)
2 (f’(Z) +kf(2)> +22 (f’(Z) +kf(2)) tz (f’(Z) +kf(2)>
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Thus,
'@y r@\ (1 e
1 d(z) i (f’(z) +kf(Z)> + (f’(Z) +kf(z))
1+k+1z[()]2:1+z e o
q Z " z / z
(1 2 tha )
'@ @\l
[ )]
=1l+z 5
f"(z) f'(2)
From Lemma 23 and (3.1), we thus find that
f"(2) f’(Z)}
Re<1+ 2z + kz >0 (zeE k>0).
L G ( )
This completes our proof of Theor¢m B.1. O

If we takea = 0, after WritingkL+1 = «in ), then we obtain M. Nunokawa’s theorem as
follows.

Theorem 3.2.Let f(z) € A(p), f(z) #0,in 0 < |z| < 1 and suppose that

| 4 2 .
Re{—f(z) <l+—, z€E.

zf!(z
f(z)

Thenf(z) € S(p).
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