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ABSTRACT. The Khatri-Rao and Tracy-Singh products for partitioned matrices are viewed as
generalized Hadamard and generalized Kronecker products, respectively. We define the Khatri-
Rao and Tracy-Singh sums for partitioned matrices as generalized Hadamard and generalized
Kronecker sums and derive some results including matrix equalities and inequalities involving
the two sums. Based on the connection between the Khatri-Rao and Tracy-Singh products (sums)
and use mainly Liu’s, Mond and Pečaríc’s methods to establish new inequalities involving the
Khatri-Rao product (sum). The results lead to inequalities involving Hadamard and Kronecker
products (sums), as a special case.
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1. I NTRODUCTION

The Hadamard and Kronecker products are studied and applied widely in matrix theory,
statistics, econometrics and many other subjects. Partitioned matrices are often encountered in
statistical applications.

For partitioned matrices, The Khatri-Rao product viewed as a generalized Hadamard product,
is discussed and used in [7, 6, 14] and the Tracy-Singh product, as a generalized Kronecker
product, is discussed and applied in [7, 5, 12]. Most results provided are equalities associated
with the products. Rao, Kleffe and Liu in [13, 8] presented several matrix inequalities involving
the Khatri-Rao product, which seem to be most existing results. In [7], Liu established the
connection between Khatri-Rao and Tracy-Singh products based on two selection matricesZ1

andZ2. This connection play an important role to give inequalities involving the two products
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2 ZEYAD AL ZHOUR AND ADEM K ILICMAN

with statistical applications. In [10], Mond and Pečaríc presented matrix versions, with matrix
weights. In [2, (2004)], Hiai and Zhan proved the following inequalities:

‖AB‖
‖A‖ · ‖B‖

≤ ‖A + B‖
‖A‖+ ‖B‖

,(*)

‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A + B‖
‖A‖+ ‖B‖

for any invariant norm with‖diag(1, 0, . . . , 0)‖ ≥ 1 andA, B are nonzero positive definite
matrices.

In the present paper, we make a further study of the Khatri-Rao and Tracy-Singh products.
We define the Khatri-Rao and Tracy-Singh sums for partitioned matrices and use mainly Liu’s,
Mond and Pěcaríc’s methods to obtain new inequalities involving these products (sums).We col-
lect several known inequalities which are derived as a special cases of some results obtained. We
generalize the inequalities in Eq (*) involving the Hadamard product (sum) and the Kronecker
product (sum).

2. BASIC DEFINITIONS AND RESULTS

2.1. Basic Definitions on Matrix Products. We introduce the definitions of five known matrix
products for non-partitioned and partitioned matrices. These matrix products are defined as
follows:

Definition 2.1. Consider matricesA = (aij) andC = (cij) of orderm × n andB = (bkl) of
orderp× q. The Kronecker and Hadamard products are defined as follows:

(1) Kronecker product:

(2.1) A⊗B = (aijB)ij ,

whereaijB is the ij th submatrix of orderp× q andA⊗B of ordermp× nq.
(2) Hadamard product:

(2.2) A ◦ C = (aijcij)ij ,

whereaijcij is theij th scalar element andA ◦ C is of orderm× n.

Definition 2.2. Consider matricesA = (aij) andB = (bkl) of orderm×m andn× n respec-
tively. TheKronecker sumis defined as follows:

(2.3) A⊕B = A⊗ In + Im ⊗B,

whereIn andIm are identity matrices of ordern × n andm × m respectively, andA ⊕ B of
ordermn×mn.

Definition 2.3. Consider matricesA andC of orderm×n, andB of orderp×q. LetA = (Aij)
be partitioned withAij of ordermi × nj as theij th submatrix,C = (Cij) be partitioned with
Cij of ordermi × nj as theij th submatrix, andB = (Bkl) be partitioned withBkl of order
pk × ql as theklth submatrix, where,m =

∑r
i=1 mi, n =

∑s
j=1 nj, p =

∑t
k=1 pk, q =

∑h
l=1 ql

are partitions of positive integersm, n, p, andq. The Tracy-Singh and Khatri-Rao products are
defined as follows:

(1) Tracy-Singh product:

(2.4) AΠB = (AijΠB)ij =
(
(Aij ⊗Bkl)kl

)
ij

,
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whereAij is theij th submatrix of ordermi×nj, Bkl is theklth submatrix of orderpk×ql,
AijΠB is theij th submatrix of ordermip× njq, Aij ⊗Bkl is theklth submatrix of order
mipk × njql andAΠB of ordermp× nq.

Note that
(i) For a non partitioned matrixA, theirAΠB is A⊗ B, i.e., forA = (aij), whereaij

is scalar, we have,

AΠB = (aijΠB)ij

=
(
(aij ⊗Bkl)kl

)
ij

=
(
(aijBkl)kl

)
ij

= (aijB)ij = A⊗B.

(ii) For column wise partitionedA andB, theirAΠB is A⊗B.
(2) Khatri-Rao product:

(2.5) A ∗B = (Aij ⊗Bij)ij ,

whereAij is the ij th submatrix of ordermi × nj, Bij is the ij th submatrix of order
pi × qj, Aij ⊗Bij is theij th submatrix of ordermipi × njqj andA ∗B of orderM ×N(
M =

∑r
i=1 mipi, N =

∑s
j=1 njqj

)
.

Note that
(i) For a non partitioned matrixA, theirA ∗ B is A⊗ B, i.e., forA = (aij),whereaij

is scalar, we have,

A ∗B = (aij ⊗Bij)ij = (aijB)ij = A⊗B.

(ii) For non partitioned matricesA andB, theirA ∗B is A ◦B, i.e., forA = (aij) and
B = (bij), whereaij andbij are scalars, we have,

A ∗B = (aij ⊗ bij)ij = (aijbij)ij = A ◦B.

2.2. Basic Connections and Results on Matrix Products.We introduce the connection be-
tween the Katri-Rao and Tracy-Singh products and the connection between the Kronecker and
Hadamard products, as a special case, which are important in creating inequalities involving
these products. We writeA ≥ B in the Löwner ordering sense thatA − B ≥ 0 is positive
semi-definite, for symmetric matricesA andB of the same order andA+ andA∗ indicate the
Moore-Penrose inverse and the conjugate of the matrixA, respectively.

Lemma 2.1. Let A = (aij) andB = (bij) be two scalar matrices of orderm × n. Then (see
[15])

(2.6) A ◦B = K ′
1(A⊗B)K2

whereK1 andK2 are two selection matrices of ordern2 × n andm2 × m, respectively, such
thatK ′

1K1 = Im andK ′
2K2 = In.

In particular, for m = n, we haveK1 = K2 = K and

(2.7) A ◦B = K ′(A⊗B)K

Lemma 2.2. LetA andB be compatibly partitioned. Then (see[8, p. 177-178]and[7, p. 272])

(2.8) A ∗B = Z ′
1 (AΠB) Z2,

whereZ1 andZ2 are two selection matrices of zeros and ones such thatZ ′
1Z1 = I1 andZ ′

2Z2 =
I2, whereI1 andI2 are identity matrices.
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4 ZEYAD AL ZHOUR AND ADEM K ILICMAN

In particular, whenA andB are square compatibly partitioned matrices, then we haveZ1 =
Z2 = Z such thatZ ′Z = I and

(2.9) A ∗B = Z ′ (AΠB) Z.

Note that, for non-partitioned matricesA, B, Z1 andZ2, Lemma 2.2 leads to Lemma 2.1, as a
special case.

Lemma 2.3. LetA, B, C,D andF be compatibly partitioned matrices. Then

(AΠB)(CΠD) = (AC)Π(BD)(2.10)

(AΠB)+ = A+ΠB+(2.11)

(A + C)Π(B + D) = AΠB + AΠD + CΠB + CΠD(2.12)

(AΠB)∗ = A∗ΠB∗(2.13)

AΠB 6= BΠA in general(2.14)

A ∗B 6= B ∗ A in general(2.15)

B ∗ F = F ∗B where F = (fij) and fij is a scalar(2.16)

(A ∗B)∗ = A∗ ∗B∗(2.17)

(A + C) ∗ (B + D) = A ∗B + A ∗D + C ∗B + C ∗D(2.18)

(A ∗B)Π(C ∗D) = (AΠC) ∗ (BΠD)(2.19)

Proof. Straightforward. �

Lemma 2.4. LetA andB be compatibly partitioned matrices. Then

(2.20) (AΠB)r = ArΠBr,

for any positive integerr.

Proof. The proof is by induction onr and using Eq. (2.10). �

Theorem 2.5.LetA ≥ 0 andB ≥ 0 be compatibly partitioned matrices. Then

(2.21) (AΠB)α = AαΠBα

for any positive realα.

Proof. By using Eq (2.20), we haveAΠB = (A1/nΠB1/n)n, for any positive integern. So
it follows that (AΠB)1/n = A1/nΠB1/n. Now (AΠB)m/n = Am/nΠBm/n, for any positive
integersn,m. The Eq (2.21) now follows by a continuity argument. �

Corollary 2.6. LetA andB be compatibly partitioned matrices. Then

(2.22) |AΠB| = |A|Π |B| , where |A| = (A∗A)1/2

Proof. Applying Eq (2.10) and Eq (2.21), we get the result. �

Theorem 2.7.LetA = (Aij) andB = (Bkl) be partitioned matrices of orderm×m, andn×n

respectively, wherem =
∑r

i=1 mi, n =
∑t

k=1 nk .Then

(a) tr(AΠB) = tr(A) · tr(B)(2.23)

(b) ‖AΠB‖p = ‖A‖p ‖B‖p , where ‖A‖p = [tr |A|p]1/p
, for all 1 ≤ p < ∞.(2.24)

Proof. (a) Straightforward.
(b) Applying Eq (2.22) and Eq (2.23), we get the result. �
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Theorem 2.8.LetA, B andI be compatibly partitioned matrices. Then

(2.25) (AΠI)(IΠB) = (IΠB)(AΠI) = AΠB.

If f(A) is an analytic function on a region containing the eigenvalues ofA, then

(2.26) f(IΠA) = IΠf(A) and f(AΠI) = f(A)ΠI

Proof. The proof of Equation (2.25) is straightforward on applying Eq (2.10).
Equation (2.26) can be proved as follows:
Sincef(A)is an analytic function, thenf(A) =

∑∞
k=0 αkA

k. Applying Eq (2.10) we get:

f(IΠA) =
∞∑

k=0

αk(IΠA)k =
∞∑

k=0

αk(IΠAk) = IΠ
∞∑

k=0

αkA
k = IΠf(A).

�

Corollary 2.9. LetA, B andI be compatibly partitioned matrices. Then

(2.27) eAΠI = eAΠI and eIΠA = IΠeA.

Lemma 2.10. Let H ≥ 0 be an × n matrix with nonzero eigenvaluesλ1 ≥ · · · ≥ λk (k ≤ n)
andX be am×m matrix such thatX = H0X, whereH0 = HH+. Then (see[6, Section 2.3])

(2.28) (X ′HX)+ ≤ X+H+X
′+ ≤ (λ1 + λk)

2

(4λ1λk)
(X ′HX)+.

Theorem 2.11.LetA ≥ 0 andB ≥ 0 be compatibly partitioned matrices such thatA0 = AA+

andB0 = BB+. Then (see[8, Section 3])

(2.29) (A ∗B0 + A0 ∗B)(A ∗B)+(A ∗B0 + A0 ∗B) ≤ A ∗B+ + A+ ∗B + 2A0 ∗B0

Theorem 2.12.LetA > 0 andB > 0 ben×n compatibly partitioned matrices with eigenvalues
contained in the interval betweenm andM (M ≥ m). Let I be a compatible identity matrix.
Then (see[8, Section 3]).

(2.30) A ∗B−1 + A−1 ∗B ≤ m2 + M2

mM
I and A ∗ A−1 ≤ m2 + M2

2mM
I

3. M AIN RESULTS

3.1. On the Tracy-Singh Sum.

Definition 3.1. Consider matricesA andB of orderm×m andn×n respectively. LetA = (Aij)
be partitioned withAij of ordermi ×mi as the ijth submatrix, and letB = (Bij) be partitioned
with Bij of ordernk × nk as the ijth submatrix

(
m =

∑r
i=1 mi, n =

∑t
k=1 nk

)
.

The Tracy-Singh sum is defined as follows:

(3.1) A∇B = AΠIn + ImΠB,

whereIn = In1+n2+···+nt = blockdiag(In1 , In2 , . . . , Int) is ann × n identity matrix, Im =
Im1+m2+···+mr = blockdiag(Im1 , Im2 , . . . , Imr) is anm ×m identity matrix,Ink

is annk × nk

identity matrix(k = 1, . . . , t), Imi
is anmi ×mi identity matrix(i = 1, . . . , r) andA∇B is of

ordermn×mn.

Note that for non-partitioned matricesA andB, theirA∇B is A⊕B.

Theorem 3.1.LetA ≥ 0, B ≥ 0, C ≥ 0 andD ≥ 0 be compatibly partitioned matrices. Then

(3.2) (A∇B)(C∇D) ≥ AC∇BD.
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6 ZEYAD AL ZHOUR AND ADEM K ILICMAN

Proof. Applying Eq (3.1) and Eq (2.10), we have

(A∇B)(C∇D) = (AΠI + IΠB)(CΠI + IΠD)

= (AΠI)(CΠI) + (AΠI)(IΠD) + (IΠB)(CΠI) + (IΠB)(IΠD)

= ACΠI + AΠD + CΠB + IΠBD

= AC∇BD + AΠD + CΠB ≥ AC∇BD.

In special cases of Eq (3.2), ifC = A∗, D = B∗, we have

(3.3) (A∇B)(A∇B)∗ ≥ AA∗∇BB∗

and ifC = A, D = B, we have

(3.4) (A∇B)2 ≥ A2∇B2.

More generally, it is easy by induction onw we can show that ifA ≥ 0 andB ≥ 0 are compatibly
partitioned matrices. Then

(3.5) (A∇B)w = Aw∇Bw +
w−1∑
k=1

(
w

k

)
(Aw−kΠBk);

(3.6) (A∇B)w ≥ Aw∇Bw

for any positive integerw. �

Theorem 3.2. Let A andB be partitioned matrices of orderm × m andn × n, respectively,(
m =

∑r
i=1 mi, n =

∑t
k=1 nk

)
. Then

(3.7) tr(A∇B) = n · tr(A) + m · tr(B),

(3.8) ‖A∇B‖p ≤
p
√

n ‖A‖p + p
√

m ‖B‖p ,

where‖A‖p = [tr |A|p]1/p, 1 ≤ p < ∞, and

(3.9) eA∇B = eAΠeB.

Proof. For the first part, on applying Eq (2.23), we obtain

tr(A∇B) = tr [(AΠIn) + (ImΠB)]

= tr(AΠIn) + tr(ImΠB)

= tr(A) tr(In) + tr(Im) tr(B)

= n · tr(A) + m · tr(B).

To prove (3.8), we apply Eq (2.24), to get

‖A∇B‖p = ‖(AΠIn) + (ImΠB)‖p

≤ ‖AΠIn‖p + ‖ImΠB‖p

= ‖A‖p ‖In‖p + ‖Im‖p ‖B‖p

= p
√

n ‖A‖p + p
√

m ‖B‖p .

For the last part, applying Eq (2.25), Eq (2.27) and Eq (2.10), we have

eA∇B = e(AΠIn)+(ImΠB)

= e(AΠIn)e(ImΠB)

= (eAΠIn)(ImΠeB) = eAΠeB.
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�

Theorem 3.3. Let A andBbe non singular partitioned matrices of orderm × m andn × n
respectively, (m =

∑r
i=1 mi, n =

∑t
k=1 nk).Then

(i) (A∇B)−1 = (A−1∇B−1)−1(A−1ΠB−1)(3.10)

(ii) (A∇B)−1 = (A−1ΠIn)(A−1∇B−1)−1(ImΠB−1)(3.11)

(iii) (A∇B)−1 = (ImΠB−1)(A−1∇B−1)−1(A−1ΠIn)(3.12)

Proof. (i) Applying Eq (2.10), we have

(A∇B)−1 = [ImΠB + AΠIn]−1

= [(ImΠB)(ImΠIn) + (ImΠB)(AΠB−1)]−1

= [(ImΠB)(ImΠIn + AΠB−1)]−1

= [(ImΠIn + AΠB−1)]−1[ImΠB]−1

= [(AΠIn)(A−1ΠIn) + (AΠIn)(ImΠB−1)]−1[ImΠB−1]

= [(AΠIn){A−1ΠIn + ImΠB−1}]−1[ImΠB−1]

= [(AΠIn)(A−1∇B−1)]−1[ImΠB−1]

= (A−1∇B−1)−1(A−1ΠIn)(ImΠB−1)

= (A−1∇B−1)−1(A−1ΠB−1).

Similarly, we obtain(ii) and(iii). �

Theorem 3.4. LetA ≥ 0 andI be compatibly partitioned matrices such thatA+ΠI = IΠA+.
Then

(3.13) A∇A+ ≥ 2AA+ΠI.

Proof. We know thatA∇I = AΠI + IΠI > AΠI. DenoteH = MΠI ≥ 0. By virtue of
H + H+ ≥ 2HH+ and Eq (2.10), we have

AΠI + (AΠI)+ ≥ 2(AΠI)(AΠI)+ = 2AA+ΠI

Since,A+ΠI = IΠA+, we get the result. �

3.2. On the Khatri-Rao Sum.

Definition 3.2. Let A, B, In andIm be partitioned as in Definition 3.1. Then theKhatri-Rao
sumis defined as follows:

(3.14) A∞B = A ∗ In + Im ∗B

Note that, for non-partitioned matricesA andB, theirA∞B is A⊕B, and for non-partitioned
matricesA, B, In andIm, their A∞B is A • B (Hadamard sum, see Definition 4.1, Eq(4.1),
Section 4).

Theorem 3.5.LetA andB be compatibly partitioned matrices. Then

(3.15) A∞B = Z ′(A∇B)Z,

whereZ is a selection matrix as in Lemma 2.2.

Proof. Applying Eq (2.9), we haveA ∗ I = Z ′(AΠI)Z, I ∗B = Z ′(IΠB)Z and

A∞B = A ∗ I + I ∗B = Z ′ (AΠI) Z + Z ′ (IΠB) Z = Z ′(A∇B)Z.

�
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Corollary 3.6. LetA ≥ 0 andI be compatibly partitioned matrices such thatA+ΠI = IΠA+.
Then

(3.16) A∞A+ ≥ 2AA+ ∗ I

Proof. Applying Eq(3.13) and Eq (3.15), we get the result. �

Corollary 3.7. LetA > 0 be compatibly partitioned with eigenvalues contained in the interval
betweenm and M (M ≥ m). Let I be a compatible identity matrix such thatA−1∞I =
I∞A−1. Then

(3.17) A∞A−1 ≤ m2 + M2

mM
I.

Proof. Applying Eq (2.30) and takingB = I, we get the result. �

Corollary 3.8. LetA ≥ 0 andI be compatibly partitioned, whereA0 = AA+ such thatA0∗I =
I ∗ A0. Then

(3.18) (A∞A0)(A ∗ I)+(A∞A0) ≤ A ∗ I + A+ ∗ I + 2A0 ∗ I

and ifA+ ∗ I = I ∗ A+, we have

(3.19) (A∞A0)(A ∗ I)+(A∞A0) ≤ A∞A+ + 2A0 ∗ I.

Proof. Applying Eq (2.29) and takingB = I, we get the results. �

Mond and Pěcaríc (see [10]) proved the following result:
If Xj (j = 1, 2, . . . , k) are positive definite Hermitian matrices of ordern×n with eigenvalues

in the interval[m, M ] andUj (j = 1, 2, . . ., k) arer × n matrices such that
∑k

j=1 UjU
∗
j = I.

Then

(a) Forp < 0 or p > 1, we have

(3.20)
k∑

j=1

UjX
p
j U∗

j ≤ λ

(
k∑

j=1

UjXjU
∗
j

)p

where,

(3.21) λ =
γp − γ

(p− 1)(γ − 1)

{
p(γ − γp)

(1− p)(γp − 1)

}−p

, γ =
M

m
.

While, for 0 < p < 1, we have the reverse inequality in Eq (3.20).
(b) Forp < 0 or p > 1, we have

(3.22)

(
k∑

j=1

UjX
p
j U∗

j

)
−

(
k∑

j=1

UjXjU
∗
j

)p

≤ αI,

where,

(3.23) α = mp −
{

Mp −mp

p(M −m)

} p
p−1

+
Mp −mp

(M −m)

[{
Mp −mp

p(M −m)

} 1
p−1

−m

]
.

While, for 0 < p < 1, we have the reverse inequality in Eq (3.22).

We have an application to the Khatri-Rao product and Khatri-Rao sum.

Theorem 3.9.LetA andB be positive definite Hermitian compatibly partitioned matrices and
let m andM be, respectively, the smallest and the largest eigenvalues ofAΠB. Then
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(a) For p a nonzero integer, we have

(3.24) Ap ∗Bp ≤ λ(A ∗B)p

where,λ is given by Eq (3.21).
While, for0 < p < 1, we have the reverse inequality in Eq (3.24).

(b) For p a nonzero integer, we have

(3.25) (Ap ∗Bp)− (A ∗B)p ≤ αI,

whereα is given by Eq (3.23).
While, for0 < p < 1, we have the reverse inequality in Eq (3.25).

Proof. In Eq (3.20) and Eq (3.22), takek = 1 and instead ofU∗, useZ, the selection matrix
which satisfy the following property:

A ∗B = Z ′(AΠB)Z, Z ′Z = I.

Making use of the fact in Eq (2.21) that for any realn (positive or negative), we have

(AΠB)n = AnΠBn,

then, withZ ′, AΠB, Z substituted forU , X, U∗, we have from Eq (3.20)

Ap ∗Bp = Z ′(Ap ∗Bp)Z

= Z ′(A ∗B)pZ

≤ λ {Z ′(AΠB)Z}p
= λ(A ∗B)p,

where,λ is given by Eq (3.21)
Similarly, from Eq (3.22), we obtain for

(Ap ∗Bp)− (A ∗B)p ≤ αI

where,α is given by Eq (3.23).
Special cases include from Eq (3.24):
(2.1) Forp = 2, we have

(3.26) A2 ∗B2 ≤ (M + m)2

4Mm
{A ∗B}2

(2.2) Forp = −1, we have

(3.27) A−1 ∗B−1 ≤ (M + m)2

4Mm
{A ∗B}−1

Similarly, special cases include from Eq (3.25):
(2.1) Forp = 2, we have

(3.28) (A2 ∗B2)− (A ∗B)2 ≤ 1

4
(M −m)2I

(2.2) Forp = −1, we have

(3.29) (A−1 ∗B−1)− (A ∗B)−1 ≤
√

M −
√

m

Mm
{I} ,

where results in Eq (3.26), Eq (3.27), and Eq (3.28) are given in [7]. �

Theorem 3.10.Let A and B be positive definite Hermitian compatibly partitioned matrices.
Let m1 andM1 be, respectively, the smallest and the largest eigenvalues ofAΠI andm2 and
M2, respectively, the smallest and the largest eigenvalues ofIΠB. Then
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(a) For p a nonzero integer, we have

(3.30) Ap∞Bp ≤ max {λ1, λ2} (A∞B)p

where,

(3.31) λ1 =
(γp

1 − γ1)

[(p− 1)(γ1 − 1)]

{
p(γ1 − γp

1)

[(1− p)(γp
1 − 1)]

}−p

, γ1 =
M1

m1

,

(3.32) λ2 =
(γp

2 − γ2)

[(p− 1)(γ2 − 1)]

{
p(γ2 − γp

2)

[(1− p)(γp
2 − 1)]

}−p

, γ2 =
M2

m2

.

While, for0 < p < 1, we have the reverse inequality in Eq (3.30).
(b) For p a nonzero integer, we have

(3.33) (Ap∞Bp)− (A∞B)p ≤ max {α1, α2} I

where,

(3.34) α1 = mp
1 −

{
Mp

1 −mp
1

p(M1 −m1)

} p
p−1

+
Mp

1 −mp
1

M1 −m1

{{
Mp

1 −mp
1

p(M1 −m1)

} 1
p−1

−m1

}

(3.35) α2 = mp
2 −

{
Mp

2 −mp
2

p(M2 −m2)

} p
p−1

+
Mp

2 −mp
2

M2 −m2

{{
Mp

2 −mp
2

p(M2 −m2)

} 1
p−1

−m2

}
While, for0 < p < 1, we have the reverse inequality in Eq (3.33).

Proof. Applying Eq (3.24), we have

Ap ∗ I = Ap ∗ Ip ≤ λ1(A ∗ I)p

I ∗Bp = Ip ∗Bp ≤ λ2(I ∗B)p

Now,

Ap∞Bp = Ap ∗ I + I ∗Bp

≤ λ1(A ∗ I)p + λ2(I ∗B)p

≤ max {λ1, λ2} [A ∗ I + I ∗B]p = max {λ1, λ2} (A∞B)p

where,λ1 andλ2 are given in Eq (3.31) and Eq (3.32).
Similarly, from Eq (3.25), we obtain for

(Ap∞Bp)− (A∞B)p ≤ max {α1, α2} I

where,α1 andα2 are given in Eq (3.34) and Eq (3.35). �

Special cases include from Eq (3.30):
(2.1) Forp = 2, we have

(3.36) A2∞B2 ≤ max

{
(M1 + m1)

2

4M1m1

,
(M2 + m2)

2

4M2m2

}
{A∞B}2 .

(2.2) Forp = −1, we have

(3.37) A−1∞B−1 ≤ max

{
(M1 + m1)

2

4M1m1

,
(M2 + m2)

2

4M2m2

}
{A∞B}−1 .

Similarly, special cases include from Eq (3.33):

J. Inequal. Pure and Appl. Math., 7(1) Art. 34, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MATRIX EQUALITIES AND INEQUALITIES INVOLVING KHATRI-RAO AND TRACY-SINGH SUMS 11

(2.1) Forp = 2, we have

(3.38) (A2∞B2)− (A∞B)2 ≤ max

{
1

4
(M1 −m1)

2,
1

4
(M2 −m2)

2

}
I.

(2.2) Forp = −1, we have

(3.39) (A−1∞B−1)− (A∞B)−1 ≤ max

{√
M1 −

√
m1

4M1m1

,

√
M2 −

√
m2

4M2m2

}
I.

Theorem 3.11.Let A and B be positive definite Hermitian compatibly partitioned matrices.
Letm andM be, respectively, the smallest and the largest eigenvalues ofA∇B. Then

(a) For p a nonzero integer, we have

(3.40) Ap∞Bp ≤ λ(A∞B)p,

whereλ is given by Eq (3.21).
While, for0 < p < 1, we have the reverse inequality in Eq (3.40).

(b) For p a nonzero integer, we have

(3.41) (Ap∞Bp)− (A∞B)p ≤ αI

where,α is given by Eq (3.23).
While, for0 < p < 1, we have the reverse inequality in Eq (3.41).

Proof. In Eq (3.20) and Eq (3.22), takek = 1 and instead ofU∗, useZ, the selection matrix
which satisfy the following property:

A∞B = Z ′(A∇B)Z, Z ′Z = I

Then, withZ ′, A∇B, Z substituted forU , X, U∗, we have from Eq (3.20)

Ap∞Bp = Z ′(Ap∇Bp)Z

= Z ′(ApΠI + IΠBp)Z

≤ Z ′ {A∇B}p Z

≤ λ {Z ′(A∇B)Z}p
= λ(A∞B)p

where,λ is given by Eq (3.21). �

Similarly, from Eq (3.22), we obtain Eq (3.41)
Special cases include from Eq (3.40):

(2.1) Forp = 2, we have

(3.42) A2∞B2 ≤ (M + m)2

4Mm
{A∞B}2

(2.2) Forp = −1, we have

(3.43) A−1∞B−1 ≤ (M + m)2

4Mm
{A∞B}−1

Similarly, special cases include from Eq (3.41):
(2.1) Forp = 2, we have

(3.44) (A2∞B2)− (A∞B)2 ≤ 1

4
(M −m)2I

(2.2) Forp = −1, we have

(3.45) (A−1∞B−1)− (A∞B)−1 ≤
√

M −
√

m

Mm
{I}
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4. SPECIAL RESULTS ON HADAMARD AND K RONECKER SUMS

The results obtained in Section 3 are quite general. Now, we consider some inequalities in
a special case which involves non-partitioned matricesA, B andI with the Hadamard product
(sum) replacing the Khatri-Rao product (sum) and the Kronecker product (sum) replacing the
Tracy-Singh product (sum). As these inequalities can be viewed as a corollary (some of) the
proofs are straightforward and alternative to those for the existing inequalities.

Definition 4.1. Let A andB be square matrices of ordern × n.TheHadamard sumis defined
as follows:

(4.1) A •B = A ◦ In + In ◦B = A ◦ In + B ◦ In = (A + B) ◦ In.

Corollary 4.1. LetA > 0. Then

(4.2) A • A−1 ≥ 2I.

Corollary 4.2. LetA > 0 be a matrix of ordern×n with eigenvalues contained in the interval
betweenm andM (M ≥ m). Then

(4.3) A • A−1 ≤ (m2 + M2)

mM
{I} .

Corollary 4.3. LetA andB ben×n positive definite Hermitian matrices and letm andM be,
respectively, the smallest and the largest eigenvalues ofA⊗B. Then

(a) For p a nonzero integer, we have

(4.4) Ap ◦Bp ≤ λ(A ◦B)p

where,λ is given by Eq (3.21).
While, for0 < p < 1, we have the reverse inequality in Eq (4.4).

(b) For p is a nonzero integer, we have

(4.5) (Ap ◦Bp)− (A ◦B)p ≤ αI

where,α is given by Eq (3.23).
While, for0 < p < 1, we have the reverse inequality in Eq (4.5).

Special cases include from Eq (4.4):
(2.1) Forp = 2, we have

(4.6) A2 ◦B2 ≤ (M + m)2

4Mm
{A ◦B}2

(2.2) Forp = −1, we have

(4.7) A−1 ◦B−1 ≤ (M + m)2

4Mm
{A ◦B}−1 .

Similarly, special cases include from Eq (4.5):
(2.1) Forp = 2, we have

(4.8) (A2 ◦B2)− (A ◦B)2 ≤ 1

4
(M −m)2I

(2.2) Forp = −1, we have

(4.9) (A−1 ◦B−1)− (A ◦B)−1 ≤
√

M −
√

m

Mm
{I} ,

where results in Eq (4.6), Eq (4.7), and Eq (4.8) are given in [11].
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We note that the eigenvalues ofA ⊗ B are then2 products of the eigenvalues ofA by the
eigenvalues ofB.Thus if the eigenvalues ofA andB are, respectively, ordered by:

(4.10) δ1 ≥ δ2 ≥ · · · ≥ δn > 0, η1 ≥ η2 ≥ · · · ≥ ηn > 0,

then in all the previous results in this sectionM = δ1η1 andm = δnηn. Thus Eq (4.6) to Eq
(4.9) become:

(4.11) A2 ◦B2 ≤ (δ1η1 + δnηn)2

4δ1η1δnηn

{A ◦B}2

(4.12) A−1 ◦B−1 ≤ (δ1η1 + δnηn)2

4δ1η1δnηn

{A ◦B}−1

(4.13) (A2 ◦B2)− (A ◦B)2 ≤ 1

4
(δ1η1 − δnηn)2 {I}

(4.14)
(
A−1 ◦B−1

)
− (A ◦B)−1 ≤

(√
δ1η1 −

√
δnηn

)
δ1η1δnηn

{I} .

Corollary 4.4. Let A andB be an × n positive definite Hermitian matrices. Letm1 andM1

be, respectively, the smallest and the largest eigenvalues ofA⊗ I andm2 andM2, respectively,
the smallest and the largest eigenvalues ofI ⊗B. Then

(a) For p a nonzero integer, we have

(4.15) Ap •Bp ≤ max {λ1, λ2} (A •B)p,

whereλ1 andλ2 are given by Eq (3.31) and Eq (3.32).
While, for0 < p < 1, we have the reverse inequality in Eq (4.15).

(b) For p a nonzero integer, we have

(4.16) (Ap •Bp)− (A •B)p ≤ max {α1, α2} I,

whereα1 andα2are given by Eq (3.34) and Eq (3.35).
While, for0 < p < 1, we have the reverse inequality in Eq (4.16).

Note that, the eigenvalues ofA⊗ I equal the eigenvalues ofA and the eigenvalues ofI ⊗B
equal the eigenvalues ofB.

Corollary 4.5. Let A andB ben × n positive definite Hermitian matrices. Letm andM be,
respectively, the smallest and the largest eigenvalues ofA⊕B. Then

(a) For p a nonzero integer, we have

(4.17) Ap •Bp ≤ λ(A •B)p,

where,λ is given by Eq (3.21).
While, for0 < p < 1, we have the reverse inequality in Eq (4.17).

(b) For p a nonzero integer, we have

(4.18) (Ap •Bp)− (A •B)p ≤ αI,

where,α is given by Eq (3.23).
While, for0 < p < 1, we have the reverse inequality in Eq (4.18).
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Special cases include from Eq (4.17):
(2.1) Forp = 2, we have

(4.19) A2 •B2 ≤ (M + m)2

4Mm
{A •B}2

(2.2) Forp = −1, we have

(4.20) A−1 •B−1 ≤ (M + m)2

4Mm
{A •B}−1

Similarly, special cases include from Eq (4.18):
(2.1) Forp = 2, we have

(4.21) (A2 •B2)− (A •B)2 ≤ 1

4
(M −m)2I

(2.2) Forp = −1, we have

(4.22) (A−1 •B−1)− (A •B)−1 ≤
√

M −
√

m

Mm
{I} .

We note that the eigenvalues ofA⊕B are then2 sums of the eigenvalues ofA by the eigenvalues
of B. Thus if the eigenvalues ofA andB are, respectively, ordered by:

δ1 ≥ δ2 ≥ · · · ≥ δn > 0, η1 ≥ η2 ≥ · · · ≥ ηn > 0,

then in all previous results of this sectionM = δ1 + η1 andm = δn + ηn. Thus Eq(4.19) to Eq
(4.22) become:

(4.23) A2 •B2 ≤ (δ1 + η1 + δn + ηn)2

4(δ1 + η1)(δn + ηn)
{A •B}2 ,

(4.24) A−1 •B−1 ≤ (δ1 + η1 + δn + ηn)2

4(δ1 + η1)(δn + ηn)
{A •B}−1 ,

(4.25) (A2 •B2)− (A •B)2 ≤ 1

4
((δ1 + η1)− (δn + ηn))2I,

(4.26) (A−1 •B−1)− (A •B)−1 ≤
√

δ1 + η1 −
√

δn + ηn

(δ1 + η1)(δn + ηn)
I.

Corollary 4.6. LetA ≥ 0 andB ≥ 0 be compatibly matrices. Then

(i) (A⊕B)(A⊕B)∗ ≥ AA∗ ⊕BB∗(4.27)

(ii) (A⊕B)w ≥ Aw ⊕Bw, for any positive integerw.(4.28)

Corollary 4.7. LetA andB be matrices of orderm×m andn× n respectively. Then

(a) tr(A⊕B) = n · tr(A) + m · tr(B)(4.29)

(b) ‖A⊕B‖p ≤
p
√

n ‖A‖p + p
√

m ‖B‖p ,(4.30)

where ‖A‖p = [tr |A|p]1/p, 1 ≤ p < ∞.

(c) eA⊕B = eA ⊗ eB(4.31)
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Corollary 4.8. LetA andB be non singular matrices of orderm×m andn× n, respectively.
Then

(i) (A⊕B)−1 = (A−1 ⊕B−1)−1(A−1 ⊗B−1)(4.32)

(ii) (A⊕B)−1 = (A−1 ⊗ In)(A−1 ⊕B−1)−1(Im ⊗B−1)(4.33)

(iii) (A⊕B)−1 = (Im ⊗B−1)(A−1 ⊕B−1)−1(A−1 ⊗ In)(4.34)

In [1], Ando proved the following inequality;

(4.35) A ◦B ≤ (Ap ◦ I)
1
p (Bq ◦ I)

1
q ,

whereA andB are positive definite matrices andp, q ≥ 1with 1/p + 1/q = 1.
If ‖·‖ is a unitarily invariant norm and‖·‖∞ is the spectral norm, Horn and Johnson in [3]

proved the following three conditions are equivalent:

(4.36)
(i) ‖A‖∞ ≤ ‖A‖
(ii) ‖AB‖ ≤ ‖A‖ · ‖B‖
(iii) ‖A ◦B‖ ≤ ‖A‖ · ‖B‖

for all matricesA andB.
In [2], Hiai and Zhan proved the following inequalities:

(4.37)
‖AB‖

‖A‖ · ‖B‖
≤ ‖A + B‖
‖A‖+ ‖B‖

and
‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A + B‖
‖A‖+ ‖B‖

for any invariant norm with‖diag(1, 0, . . ., 0)‖ ≥ 1 andA, B are nonzero positive definite
matrices.

We have an application to generalize the inequalities in Eq (4.37) involving the Hadamard
product (sum) and the Kronecker product (sum).

Theorem 4.9.Let‖·‖ be a unitarily invariant norm with‖diag(1, 0, . . . , 0)‖ ≥ 1 andA andB
be nonzero positive definite matrices. Then

(4.38)
‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A •B‖
‖A‖+ ‖B‖

.

Proof. Let ‖·‖∞ be the spectral norm and applying Eq (4.35) toA/ ‖A‖∞ ≤ I, B/ ‖B‖∞ ≤ I
and using the Young inequality for scalars, we get

A

‖A‖∞
◦
(

B

‖B‖∞

)
≤
[(

A

‖A‖∞

)p

◦I
] 1

p
[(

B

‖B‖∞

)q

◦I
] 1

q

≤ 1

p

(
A

‖A‖∞

)p

◦ I +
1

q

(
B

‖B‖∞

)q

◦ I

≤ 1

p

(
A

‖A‖∞

)
◦ I +

1

q

(
B

‖B‖∞

)
◦ I

=

{
1

p

(
A

‖A‖∞

)
+

1

q

(
B

‖B‖∞

)}
◦ I

We choose
1

p
=

‖A‖∞
[‖A‖∞ + ‖B‖∞]

and
1

q
=

‖B‖∞
[‖A‖∞ + ‖B‖∞]

.
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Since‖A‖∞ ≤ ‖A‖ and‖B‖∞ ≤ ‖B‖ thanks to‖diag(1, 0, . . . , 0)‖ ≥ 1, we obtain

A ◦B ≤
{
‖A‖∞ · ‖B‖∞
‖A‖∞ + ‖B‖∞

}
(A + B) ◦ I(4.39)

≤
{
‖A‖ · ‖B‖
‖A‖+ ‖B‖

}
(A •B)

Hence,

‖A ◦B‖ ≤ ‖A‖ · ‖B‖
‖A‖+ ‖B‖

‖A •B‖ or
‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A •B‖
‖A‖+ ‖B‖

�

Corollary 4.10. Let ‖·‖ be a unitarily invariant norm with‖diag(1, 0, . . . , 0)‖ ≥ 1 andA and
B be nonzero positive definite matrices. Then

(4.40)
‖A⊗B‖
‖A‖ · ‖B‖

≤ ‖A⊕B‖
‖A‖+ ‖B‖

.

Proof. Applying Eq (2.7) and Eq (4.39), we have

K ′(A⊗B)K ≤ ‖A‖ · ‖B‖
‖A‖+ ‖B‖

K ′(A⊕B)K

and

‖K ′(A⊗B)K‖ ≤ ‖A‖ · ‖B‖
‖A‖+ ‖B‖

‖K ′(A⊕B)K‖ .

Provided that‖·‖ is unitarily invariant norm, we get the result. �
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