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ABSTRACT. An elementary proof of the preservation of Lipschitz constants by the Meyer-König
and Zeller operators is presented.
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Given the real numbersA ≥ 0 and0 < α ≤ 1, we denote by LipAα the set of all functions
f : [0, 1] → R, satisfying

|f(x2)− f(x1)| ≤ A|x2 − x1|α for all x1, x2 ∈ [0, 1].

The main purpose of this note is to present an elementary proof of the following result:
Given the continuous functionf : [0, 1] → R, it holds that

(1) f ∈ LipAα

if and only if

(2) Mnf ∈ LipAα for all n ≥ 1,

where(Mn)n≥1 is the sequence of Meyer-König and Zeller operators.
It should be mentioned that similar proofs for other operators are to be found in [2] and [3].

On the other hand, the equivalence (1)⇔ (2) is a special case of a much more general result [1,
Theorem 1]. However, the proof presented in [1] is completely different and does not have an
elementary character.
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Proof. Let f : [0, 1] → R be a continuous function and letn be a positive integer. Recall that
thenth Meyer-König and Zeller power series associated tof is defined by (see [4])

Mnf(1) = f(1),

Mnf(x) =
∞∑

k=0

f

(
k

n + k

)
mn,k(x), x ∈ [0, 1[,

mn,k(x) =

(
n + k

k

)
xk(1− x)n+1, k = 0, 1, 2, . . . .

That (2) implies (1) follows from the fact that the sequence(Mnf)n≥1 converges uniformly tof
on [0, 1]. Thus it remains to prove that (1) implies (2). To this end, letn be an arbitrary positive
integer and let0 ≤ x1 < x2 < 1 (sinceMnf is continuous at1, it suffices to consider only the
casex2 < 1). Then we have
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where the change of indexj − k = ` was used for the last equality. We have also

Mnf(x1) =
∞∑

k=0

f

(
k

n + k

) (
n + k

k

)
xk

1(1− x1)
n+1

=
∞∑

k=0

f

(
k

n + k

) (
n + k

k

)
xk

1 ·
(1− x2)

n+k+1

(1− x1)k
· 1(

1− x2−x1

1−x1

)n+k+1

=
∞∑

k=0

f

(
k

n + k

) (
n + k

k

)
xk

1(1− x2)
n+k+1

(1− x1)k

∞∑
`=0

(
n + k + `

`

) (
x2 − x1

1− x1

)`

=
∞∑

k=0

∞∑
`=0

f

(
k

n + k

)
(n + k + `)!

n!k!`!
· xk

1(x2 − x1)
`(1− x2)

n+k+1

(1− x1)k+`
.

J. Inequal. Pure and Appl. Math., 4(5) Art. 90, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


PRESERVATION OFL IPSCHITZ CONSTANTS 3

In particular, the above equalities show that
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Sincef ∈ LipAα, we have
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Taking into account (3) and the fact that the functiont ∈ [0,∞[ 7−→ tα ∈ [0,∞[ is concave, we
deduce that

|Mnf(x2)−Mnf(x1)|

≤ A

[
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.

Using now (4) and (5) we get

|Mnf(x2)−Mnf(x1)| ≤ A(x2 − x1)
α,

i.e.,Mnf ∈ LipAα. This completes the proof. �
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