Applied Mathematics http://jipam.vu.edu.au/

Volume 4, Issue 5, Article 90, 2003

AN ELEMENTARY PROOF OF THE PRESERVATION OF LIPSCHITZ CONSTANTS BY THE MEYER-KÖNIG AND ZELLER OPERATORS

TIBERIU TRIF

Universitatea Babeş-Bolyai, Facultatea de Matematică şi Informatică, Str. M. Kogălniceanu, 1, 3400 Cluj-Napoca, Romania. ttrif@math.ubbcluj.ro

Received 20 October, 2003; accepted 02 November, 2003
Communicated by A. Lupaş

Abstract

An elementary proof of the preservation of Lipschitz constants by the Meyer-König and Zeller operators is presented.

Key words and phrases: Meyer-König and Zeller operators, Preservation of Lipschitz constants.
2000 Mathematics Subject Classification. 41A36, 26A16.
Given the real numbers $A \geq 0$ and $0<\alpha \leq 1$, we denote by $\operatorname{Lip}_{A} \alpha$ the set of all functions $f:[0,1] \rightarrow \mathbb{R}$, satisfying

$$
\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right| \leq A\left|x_{2}-x_{1}\right|^{\alpha} \quad \text { for all } \quad x_{1}, x_{2} \in[0,1] .
$$

The main purpose of this note is to present an elementary proof of the following result:
Given the continuous function $f:[0,1] \rightarrow \mathbb{R}$, it holds that

$$
\begin{equation*}
f \in \operatorname{Lip}_{A} \alpha \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
M_{n} f \in \operatorname{Lip}_{A} \alpha \quad \text { for all } \quad n \geq 1, \tag{2}
\end{equation*}
$$

where $\left(M_{n}\right)_{n \geq 1}$ is the sequence of Meyer-König and Zeller operators.
It should be mentioned that similar proofs for other operators are to be found in [2] and [3]. On the other hand, the equivalence (1) $\Leftrightarrow(2)$ is a special case of a much more general result [1, Theorem 1]. However, the proof presented in [1] is completely different and does not have an elementary character.

Proof. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function and let n be a positive integer. Recall that the nth Meyer-König and Zeller power series associated to f is defined by (see [4])

$$
\begin{aligned}
& M_{n} f(1)=f(1), \\
& M_{n} f(x)=\sum_{k=0}^{\infty} f\left(\frac{k}{n+k}\right) m_{n, k}(x), \quad x \in[0,1[, \\
& m_{n, k}(x)=\binom{n+k}{k} x^{k}(1-x)^{n+1}, \quad k=0,1,2, \ldots
\end{aligned}
$$

That (2) implies (1) follows from the fact that the sequence $\left(M_{n} f\right)_{n \geq 1}$ converges uniformly to f on $[0,1]$. Thus it remains to prove that (1) implies (2). To this end, let n be an arbitrary positive integer and let $0 \leq x_{1}<x_{2}<1$ (since $M_{n} f$ is continuous at 1 , it suffices to consider only the case $x_{2}<1$). Then we have

$$
\begin{aligned}
M_{n} f\left(x_{2}\right) & =\sum_{j=0}^{\infty} f\left(\frac{j}{n+j}\right)\binom{n+j}{j} x_{2}^{j}\left(1-x_{2}\right)^{n+1} \\
& =\sum_{j=0}^{\infty} f\left(\frac{j}{n+j}\right)\binom{n+j}{j}\left(1-x_{2}\right)^{n+1}\left(\frac{x_{2}-x_{1}+x_{1}-x_{1} x_{2}}{1-x_{1}}\right)^{j} \\
& =\sum_{j=0}^{\infty} f\left(\frac{j}{n+j}\right)\binom{n+j}{j} \frac{\left(1-x_{2}\right)^{n+1}}{\left(1-x_{1}\right)^{j}} \sum_{k=0}^{j}\binom{j}{k} x_{1}^{k}\left(1-x_{2}\right)^{k}\left(x_{2}-x_{1}\right)^{j-k} \\
& =\sum_{j=0}^{\infty} \sum_{k=0}^{j} f\left(\frac{j}{n+j}\right) \frac{(n+j)!}{n!k!(j-k)!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{j-k}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{j}} \\
& =\sum_{k=0}^{\infty} \sum_{j=k}^{\infty} f\left(\frac{j}{n+j}\right) \frac{(n+j)!}{n!k!(j-k)!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{j-k}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{j}} \\
& =\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} f\left(\frac{k+\ell}{n+k+\ell}\right) \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}}
\end{aligned}
$$

where the change of index $j-k=\ell$ was used for the last equality. We have also

$$
\begin{aligned}
M_{n} f\left(x_{1}\right) & =\sum_{k=0}^{\infty} f\left(\frac{k}{n+k}\right)\binom{n+k}{k} x_{1}^{k}\left(1-x_{1}\right)^{n+1} \\
& =\sum_{k=0}^{\infty} f\left(\frac{k}{n+k}\right)\binom{n+k}{k} x_{1}^{k} \cdot \frac{\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k}} \cdot \frac{1}{\left(1-\frac{x_{2}-x_{1}}{1-x_{1}}\right)^{n+k+1}} \\
& =\sum_{k=0}^{\infty} f\left(\frac{k}{n+k}\right)\binom{n+k}{k} \frac{x_{1}^{k}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k}} \sum_{\ell=0}^{\infty}\binom{n+k+\ell}{\ell}\left(\frac{x_{2}-x_{1}}{1-x_{1}}\right)^{\ell} \\
& =\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} f\left(\frac{k}{n+k}\right) \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}} .
\end{aligned}
$$

In particular, the above equalities show that

$$
\begin{equation*}
\sum_{k, \ell=0}^{\infty} \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}}=1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k, \ell=0}^{\infty} \frac{k+\ell}{n+k+\ell} \cdot \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}}=x_{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k, \ell=0}^{\infty} \frac{k}{n+k} \cdot \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}}=x_{1} . \tag{5}
\end{equation*}
$$

Since $f \in \operatorname{Lip}_{A} \alpha$, we have

$$
\begin{aligned}
& \left|M_{n} f\left(x_{2}\right)-M_{n} f\left(x_{1}\right)\right| \\
& \leq \sum_{k, \ell=0}^{\infty} \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}}\left|f\left(\frac{k+\ell}{n+k+\ell}\right)-f\left(\frac{k}{n+k}\right)\right| \\
& \leq A \sum_{k, \ell=0}^{\infty} \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}}\left(\frac{k+\ell}{n+k+\ell}-\frac{k}{n+k}\right)^{\alpha} .
\end{aligned}
$$

Taking into account (3) and the fact that the function $t \in\left[0, \infty\left[\longmapsto t^{\alpha} \in[0, \infty[\right.\right.$ is concave, we deduce that

$$
\begin{aligned}
& \left|M_{n} f\left(x_{2}\right)-M_{n} f\left(x_{1}\right)\right| \\
& \quad \leq A\left[\sum_{k, \ell=0}^{\infty} \frac{(n+k+\ell)!}{n!k!\ell!} \cdot \frac{x_{1}^{k}\left(x_{2}-x_{1}\right)^{\ell}\left(1-x_{2}\right)^{n+k+1}}{\left(1-x_{1}\right)^{k+\ell}}\left(\frac{k+\ell}{n+k+\ell}-\frac{k}{n+k}\right)\right]^{\alpha} .
\end{aligned}
$$

Using now (4) and (5) we get

$$
\left|M_{n} f\left(x_{2}\right)-M_{n} f\left(x_{1}\right)\right| \leq A\left(x_{2}-x_{1}\right)^{\alpha},
$$

i.e., $M_{n} f \in \operatorname{Lip}_{A} \alpha$. This completes the proof.

References

[1] J.A. ADELL and J. de la CAL, Using stochastic processes for studying Bernstein-type operators, Proceedings of the Second International Conference in Functional Analysis and Approximation Theory (Acquafredda di Maratea, 1992), Rend. Circ. Mat. Palermo, Suppl. 33(2) (1993), 125-141.
[2] B.M. BROWN, D. ELLIOTT and D.F. PAGET, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49 (1987), 196-199.
[3] B. DELLA VECCHIA, On the preservation of Lipschitz constants for some linear operators, Bol. Un. Mat. Ital. B, 3(7) (1989), 125-136.
[4] A. LUPAŞ and M.W. MULLER, Approximation properties of the M_{n}-operators, Aequationes Math., 5 (1970), 19-37.

