ON SOME WEIGHTED MIXED NORM HARDY-TYPE INTEGRAL INEQUALITY

C.O. IMORU AND A.G. ADEAGBO-SHEIKH

Department of Mathematics
Obafemi Awolowo University,
Ile-Ife, Nigeria
cimoru@oauife.edu.ng
adesheikh2000@yahoo.co.uk
Received 07 May, 2007; accepted 24 August, 2007
Communicated by B. Opić

Abstract

In this paper, we establish a weighted mixed norm integral inequality of Hardy's type. This inequality features a free constant term and extends earlier results on weighted norm Hardy-type inequalities. It contains, as special cases, some earlier inequalities established by the authors and also provides an improvement over them.

Key words and phrases: Hardy-type inequality, Weighted norm.
2000 Mathematics Subject Classification. 26D15.

1. Introduction

In a recent paper [2], the authors proved the following result.
Theorem 1.1. Let g be continuous and non-decreasing on $[a, b], 0 \leq a \leq b \leq \infty$ with $g(x)>$ $0, x>0, r \neq 1$ and let $f(x)$ be non-negative and Lebesgue-Stieltjes integrable with respect to $g(x)$ on $[a, b]$. Suppose $F_{a}(x)=\int_{a}^{x} f(t) d g(t), F_{b}(x)=\int_{x}^{b} f(t) d g(t)$ and $\delta=\frac{1-r}{p}, r \neq 1$. Then

$$
\begin{align*}
& \int_{a}^{b} g(x)^{\delta-1}\left[g(x)^{-\delta}-g(a)^{-\delta}\right]^{1-p} F_{a}(x)^{p} d g(x)+K_{1}(p, \delta, a, b) \tag{1.1}\\
& \leq\left[\frac{p}{r-1}\right]^{p} \int_{a}^{b} g(x)^{\delta p-1}[g(x) f(x)]^{p} d g(x), \quad r>1
\end{align*}
$$

$$
\begin{align*}
& \int_{a}^{b} g(x)^{\delta-1}\left[g(x)^{-\delta}-g(b)^{-\delta}\right]^{1-p} F_{b}(x)^{p} d g(x)+K_{2}(p, \delta, a, b) \tag{1.2}\\
& \leq\left[\frac{p}{1-r}\right]^{p} \int_{a}^{b} g(x)^{\delta p-1}[g(x) f(x)]^{p} d g(x), \quad r<1
\end{align*}
$$

where

$$
K_{1}(p, \delta, a, b)=\frac{p}{r-1} g(b)^{\delta}\left[g(b)^{-\delta}-g(a)^{-\delta}\right]^{1-p} F_{a}(b)^{p}, \quad \delta<0, \text { i.e. } r>1
$$

and

$$
K_{2}(p, \delta, a, b)=\frac{p}{1-r} g(a)^{\delta}\left[g(a)^{-\delta}-g(b)^{-\delta}\right]^{1-p} F_{b}(a)^{p}, \quad \delta>0, \text { i.e. } r<1 .
$$

The above result generalizes Imoru [1] and therefore Shum [3]. The purpose of the present work is to obtain a weighted norm Hardy-type inequality involving mixed norms which contains the above result as a special case and also provides an improvement over it.

2. Main Result

The main result of this paper is the following theorem:
Theorem 2.1. Let g be a continuous function which is non-decreasing on $[a, b], 0 \leq a \leq b<$ ∞, with $g(x)>0$ for $x>0$. Suppose that $q \geq p \geq 1$ and $f(x)$ is non-negative and LebesgueStieltjes integrable with respect to $g(x)$ on $[a, b]$. Let

$$
\begin{equation*}
F_{a}(x)=\int_{a}^{x} f(t) d g(t), \theta_{a}(x)=\int_{a}^{x} g(t)^{(p-1)(1+\delta)} f(t)^{p} d g(t), \tag{2.1}
\end{equation*}
$$

and $\delta=\frac{1-r}{p}, r \neq 1$. Then if $r>1$, i.e. $\delta<0$,

$$
\begin{align*}
& {\left[\int_{a}^{b} g(x)^{\frac{\delta q}{p}-1}\left[g(x)^{-\delta}-g(a)^{-\delta}\right]^{\frac{q}{p}(p-1)}\right.} \tag{2.3}\\
& \left.F_{a}^{q}(x) d g(x)+A_{1}(p, q, a, b, \delta)\right]^{\frac{1}{q}} \\
& \leq
\end{align*}
$$

and for $r<1$, i.e. $\delta>0$,

$$
\begin{align*}
& {\left[\int_{a}^{b} g(x)^{\frac{\delta q}{p}-1}\left[g(x)^{-\delta}-g(b)^{-\delta}\right]^{\frac{q}{p}(p-1)}\right.} \tag{2.4}\\
& \left.F_{b}^{q}(x) d g(x)+A_{2}(p, q, a, b, \delta)\right]^{\frac{1}{q}} \\
& \leq
\end{align*}
$$

where

$$
\begin{aligned}
A_{1}(p, q, a, b, \delta) & =\frac{p}{q}(-\delta)^{\frac{q}{p}(1-p)-1} g(b)^{\frac{\delta q}{p}} \theta_{a}(b)^{\frac{q}{p}}, \quad \delta<0, \\
C_{1}(p, q, \delta) & =\left[\frac{p}{q}(-\delta)^{\frac{q}{p}(1-p)-1}\right]^{\frac{1}{q}}, \\
A_{2}(p, q, a, b, \delta) & =\frac{p}{q}(\delta)^{\frac{q}{p}(1-p)-1} g(a)^{\frac{\delta q}{p}} \theta_{b}(a)^{\frac{q}{p}}, \quad \delta>0 \\
C_{2}(p, q, \delta) & =\left[\frac{p}{q} \delta^{\frac{q}{p}(1-p)-1}\right]^{\frac{1}{q}} .
\end{aligned}
$$

Proof. For the proof of Theorem 2.1 we will use the following adaptations of Jensen's inequality for convex functions,

$$
\begin{equation*}
\int_{a}^{x} h(x, t)^{\frac{1}{p q}} d \lambda(t) \leq\left[\int_{a}^{x} d \lambda(t)\right]^{1-\frac{1}{p}}\left[\int_{a}^{x} h(x, t)^{\frac{1}{q}} d \lambda(t)\right]^{\frac{1}{p}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x}^{b} h(x, t)^{\frac{1}{p q}} d \lambda(t) \leq\left[\int_{x}^{b} d \lambda(t)\right]^{1-\frac{1}{p}}\left[\int_{x}^{b} h(x, t)^{\frac{1}{q}} d \lambda(t)\right]^{\frac{1}{p}}, \tag{2.6}
\end{equation*}
$$

where $h(x, t) \geq 0$ for $x \geq 0, t \geq 0, \lambda$ is non-decreasing and $q \geq p \geq 1$.
Let

$$
\begin{equation*}
h(x, t)=g(x)^{\delta q} g(t)^{p q(1+\delta)} f(t)^{p q}, \quad d \lambda(t)=g(t)^{-(1+\delta)} d g(t), \tag{2.7}
\end{equation*}
$$

$\Delta_{1}^{q}=(-\delta)^{\frac{q}{p}(1-p)}$, if $\delta<0$ and $\Delta_{2}^{q}=(\delta)^{\frac{q}{p}(1-p)}$, if $\delta>0$.
Using (2.7) in (2.5), we get

$$
\begin{aligned}
& g(x)^{\frac{\delta}{p}} \int_{a}^{x} f(t) d g(t) \\
& \quad \leq(-\delta)^{\frac{1}{p}(1-p)}\left[g(x)^{-\delta}-g(a)^{-\delta}\right]^{\frac{1}{p}(p-1)} g(x)^{\frac{\delta}{p}}\left[\int_{a}^{x} g(t)^{(p-1)(1+\delta)} f(t)^{p} d g(t)\right]^{\frac{1}{p}} .
\end{aligned}
$$

Raising both sides of the above inequalities to power q and using (2.1), we obtain

$$
g(x)^{\frac{\delta q}{p}} F_{a}(x)^{q} \leq \Delta_{1}^{q} g_{a}(x)^{\frac{q}{p}(p-1)} g(x)^{\frac{\delta q}{p}} \theta_{a}(x)^{\frac{q}{p}},
$$

where $g_{a}(x)=\left[g(x)^{-\delta}-g(a)^{-\delta}\right]$.
Integrating over (a, b) with respect to $g(x)^{-1} d g(x)$ gives

$$
\begin{equation*}
\int_{a}^{b} g(x)^{\frac{\delta q}{p}-1} g_{a}(x)^{\frac{q}{p}(1-p)} F_{a}(x)^{q} d g(x) \leq \Delta_{1}^{q} \int_{a}^{b} g(x)^{\frac{\delta q}{p}-1} \theta_{a}(x)^{\frac{q}{p}} d g(x)=J . \tag{2.8}
\end{equation*}
$$

Now integrate the right side of (2.8) by parts to obtain

$$
\begin{aligned}
J= & \Delta_{1}^{q} \int_{a}^{b} g(x)^{\frac{\delta q}{p}-1} \theta_{a}(x)^{\frac{q}{p}} d g(x) \\
= & \left.\frac{\Delta_{1}^{q}}{(\delta q / p)} g(x)^{\frac{\delta q}{p}} \theta_{a}(x)^{\frac{q}{p}}\right|_{a} ^{b}+\left(-\delta^{-1}\right) \Delta_{1}^{q} \\
& \quad \times \int_{a}^{b} g(x)^{\frac{\delta q}{p}} g(x)^{(p-1)(1+\delta)} f(x)^{p} \theta_{a}(x)^{\frac{q}{p}-1} d g(x) .
\end{aligned}
$$

However,

$$
\begin{aligned}
I & =\int_{a}^{b} g(x)^{\frac{\delta q}{p}} g(x)^{(p-1)(1+\delta)} f(x)^{p} \theta_{a}^{\frac{q}{p}-1}(x) d g(x) \\
& =\int_{a}^{b} g(x)^{\frac{\delta q}{p}} g(x)^{(p-1)(1+\delta)} f(x)^{p}\left[\int_{a}^{x} g(t)^{\delta p+p-1-\delta} f(t)^{p} d g(t)\right]^{\frac{q}{p}-1} d g(x) \\
& =\int_{a}^{b} g(x)^{\delta p+p-1} f(x)^{p}\left[g(x)^{\delta} \int_{a}^{x} g(t)^{\delta p+p-1-\delta} f(t)^{p} d g(t)\right]^{\frac{q}{p}-1} d g(x) .
\end{aligned}
$$

Since $\delta<0$, we have $g(x)^{-\delta} \geq g(t)^{-\delta} \forall t \in[a, x]$.

Consequently

$$
\begin{aligned}
I & \leq \int_{a}^{b} g(x)^{\delta p+p-1} f(t)^{p}\left[\int_{a}^{x} g(t)^{\delta p+p-1} f(t)^{p} d g(t)\right]^{\frac{q}{p}-1} d g(x) \\
& =\int_{a}^{b}\left[\int_{a}^{x} g(t)^{\delta p+p-1} f(t)^{p} d g(t)\right]^{\frac{q}{p}-1} g(x)^{\delta p+p-1} f(t)^{p} d g(x) \\
& =\frac{p}{q}\left[\int_{a}^{b} g(x)^{\delta p-1}[f(x) g(x)]^{p} d g(x)\right]^{\frac{q}{p}} .
\end{aligned}
$$

Thus (2.8) becomes

$$
\begin{align*}
\int_{a}^{b} g(x)^{\frac{\delta q}{p}-1}\left[g(x)^{-\delta}-g(a)^{-\delta}\right]^{\frac{q}{p}(1-p)} & F_{a}(x)^{q} d g(x)+\frac{p}{q} \Delta_{1}^{q}\left(-\delta^{-1}\right) g(b)^{\frac{\delta q}{p}} \theta_{a}(b)^{\frac{q}{p}} \tag{2.9}\\
& \leq \frac{p}{q}\left(-\delta^{-1}\right) \Delta_{1}^{q}\left[\int_{a}^{b} g(x)^{\delta p-1}[f(x) g(x)]^{p} d g(x)\right]^{\frac{q}{p}}
\end{align*}
$$

Taking the $q^{\text {th }}$ root of both sides yields assertion (2.3) of the theorem.
To prove (2.4), we start with inequality (2.6) and use (2.7) with (2.2) to obtain

$$
\begin{aligned}
g(x)^{\frac{\delta}{p}} F_{b}(x) & \leq(-\delta)^{\frac{1}{p}(1-p)} g_{b}(x)^{\frac{1}{p}(p-1)} g(x)^{\frac{\delta}{p}} \theta_{b}(x)^{\frac{1}{p}} \\
& =\left(\delta^{-1}\right)^{\frac{1}{p}(p-1)}\left(-g_{b}(x)\right)^{\frac{1}{p}(p-1)} g(x)^{\frac{\delta}{p}} \theta_{b}(x)^{\frac{1}{p}},
\end{aligned}
$$

where $g_{b}(x)=\left[g(b)^{-\delta}-g(x)^{-\delta}\right]$.
On rearranging and raising to power q and then integrating both sides over $[a, b]$ with respect to $g(x)^{-1} d g(x)$, we obtain

$$
\begin{equation*}
\int_{a}^{b} g(x)^{\frac{\delta q}{p}-1}\left[g(x)^{-\delta}-g(b)^{-\delta}\right]^{\frac{q}{p}(1-p)} F_{b}(x)^{q} d g(x) \leq \Delta_{2}^{q} \int_{a}^{b} g(x)^{\frac{\delta q}{p}-1} \theta_{b}(x) d g(x) \tag{2.10}
\end{equation*}
$$

We denote the right side of (2.10) by H, integrate it by parts and use the fact that for $\delta>0$, $g(x)^{\delta} \leq g(t)^{\delta} \quad \forall t \in[x, b]$ to obtain

$$
H \leq\left.\frac{p}{\delta q} \Delta_{2}^{q} g(x)^{\frac{\delta p}{q}} \theta_{b}(x)^{\frac{q}{p}}\right|_{a} ^{b}+(\delta q / p)^{-1} \Delta_{2}^{q} \int_{a}^{b} g(x)^{\delta p-1}[f(x) g(x)]^{p} d g(x)
$$

Using this in (2.10) we obtain

$$
\begin{align*}
\int_{a}^{b} g(x)^{\frac{\delta q}{p}-1}\left[g(x)^{-\delta}-g(b)^{-\delta}\right]^{\frac{q}{p}(1-p)} & F_{b}(x)^{q} d g(x)+\frac{p}{q} \delta^{-1} \Delta_{2}^{q} g(a)^{\frac{q}{p}} \theta_{b}(a)^{\frac{q}{p}} \tag{2.11}\\
& \leq \frac{p}{q} \delta^{-1} \Delta_{2}^{q}\left[\int_{a}^{b} g(x)^{\delta p-1}[f(x) g(x)]^{p} d g(x)\right]^{\frac{q}{p}}
\end{align*}
$$

We take the $q^{\text {th }}$ root of both sides to obtain assertion 2.4 of the theorem.
Remark 2.2. Let $p=q$, and $\delta=\frac{1-r}{p}<0$, i.e., $r>1$, then 2.3 reduces to

$$
\begin{align*}
\int_{a}^{b} g(x)^{\delta-1}\left[g(x)^{-\delta}-g(a)^{-\delta}\right]^{p-1} & F_{a}(x)^{p} d g(x)+A_{1}(p, p, a, b, \delta) \tag{2.12}\\
& \leq C_{1}(p, p, \delta)\left[\int_{a}^{b} g(x)^{\delta p-1}[f(x) g(x)]^{p} d g(x)\right]
\end{align*}
$$

where

$$
\begin{equation*}
A_{1}(p, p, a, b, \delta)=(-\delta)^{-p} g(b)^{\delta} \theta_{a}(b), \quad \delta<0 \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}(p, p, \delta)=(-\delta)^{-p}=\left[\frac{p}{r-1}\right]^{p} \tag{2.14}
\end{equation*}
$$

Now from (2.18) in [2] we have that, for $\delta<0$

$$
\begin{equation*}
g(b)^{\delta} \theta_{a}(b) \geq\left(-\delta^{-1}\right)^{1-p} g(b)^{\delta}\left[g(b)^{-\delta}-g(a)^{-\delta}\right]^{1-p} F_{a}(b)^{p} . \tag{2.15}
\end{equation*}
$$

Thus, from (2.13) and (2.15), using notations in (1.1), we have

$$
\begin{align*}
A_{1}(p, p, a, b, \delta) & =(-\delta)^{-p} g(b)^{\delta} \theta_{a}(b) \tag{2.16}\\
& \geq(-\delta)^{-p}\left(-\delta^{-1}\right)^{1-p} g(b)^{\delta}\left[g(b)^{-\delta}-g(a)^{-\delta}\right]^{1-p} F_{a}(b)^{p} \\
& =(-\delta)^{-1} g(b)^{\delta}\left[g(b)^{-\delta}-g(a)^{-\delta}\right]^{1-p} F_{a}(b)^{p} \\
& =\frac{p}{r-1} g(b)^{\delta}\left[g(b)^{-\delta}-g(a)^{-\delta}\right]^{1-p} F_{a}(b)^{p} \\
& =K_{1}(p, \delta, a, b),
\end{align*}
$$

i.e., $A_{1}(p, p, a, b, \delta)=K_{1}(p, \delta, a, b)+B_{1}$ for some $B_{1} \geq 0$.

Thus we can write (2.12), using (2.14), as

$$
\begin{align*}
& \int_{a}^{b} g(x)^{\delta-1}\left[g(x)^{-\delta}-g(a)^{-\delta}\right]^{p-1} F_{a}(x)^{p} d g(x)+K_{1}(p, \delta, a, b)+B_{1} \tag{2.17}\\
& \leq\left[\frac{p}{r-1}\right]^{p}\left[\int_{a}^{b} g(x)^{\delta p-1}[f(x) g(x)]^{p} d g(x)\right]
\end{align*}
$$

So, when $B_{1}=0$, 2.17) reduces to (1.1). When $B_{1} \neq 0$, i.e., $B_{1}>0$, 2.17) is an improvement of (1.1). Similarly with notations in (1.2) and (2.4) in this paper we use (2.19) in [2] to prove that

$$
A_{2}(p, p, a, b, \delta)=K_{2}(p, \delta, a, b)+B_{2}
$$

for some $B_{2} \geq 0$.
Thus, when $p=q$, (2.4) reduces to (1.2) if $B_{2}=0$ and is an improvement of (1.2) when $B_{2} \neq 0$, i. e., when $B_{2}>0$.

References

[1] C.O. IMORU, On some integral inequalities related to Hardy's, Canadian Math. Bull., 20(3) (1977), 307-312.
[2] C.O. IMORU and A.G. ADEAGBO-SHEIKH, On an integral inequality of the Hardy-type, (accepted) Austral. J. Math. Anal. and Applics.
[3] D.T. SHUM, On integral inequalities related to Hardy's, Canadian Math. Bull., 14(2) (1971), 225230.

