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1. I NTRODUCTION

Let Hn be the class of all polynomials of degree not exceedingn and letw be a weight
function defined onI = [−1, 1], i.e.w(t) ≥ 0 for all t ∈ I and∫ 1

−1

|t|kw(t)dt <∞ for k = 0, 1, 2, . . .

Then there is a unique system{pn} of polynomials such thatpn ∈ Hn, pn ≡ pn(w;x) = γnx
n

+ lower degree terms, whereγn > 0 and∫ 1

−1

pn(t)pm(t)w(t)dt = δn,m

(see [9, Chap. II]). Iffw is integrable onI, then bySn[f ](w;x) we denote then-th partial sum
of the Fourier series of the functionf with respect to the system{pn}, i.e.

Sn[f ](w;x) :=
n−1∑
k=0

akpk(x) =

∫ 1

−1

f(t)Kn(x, t)w(t)dt,
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2 MAŁGORZATA POWIERSKA

where

ak :=

∫ 1

−1

f(t)pk(t)w(t)dt, k = 0, 1, 2, . . .

Kn(x, t) :=
n−1∑
k=0

pk(x)pk(t), n = 1, 2, . . .(1.1)

In 1985 (see [6, p. 485]) R. Bojanic proved the following

Theorem 1.1.Letw be a weight function and suppose that for allx ∈ (−1, 1) andn = 1, 2, . . .

0 < w(x) ≤ K(1− x2)−A,(1.2)

|pn(x)| ≤ K(1− x2)−B,(1.3) ∣∣∣∣∫ x

−1

w(t)pn(t)dt

∣∣∣∣ ≤ C

n
,(1.4)

whereA,B,C,K are some non-negative constants. Iff is a function of bounded variation in
the Jordan sense onI, then∣∣∣∣Sn[f ](w;x)− 1

2
(f(x+) + f(x−))

∣∣∣∣ ≤ ϕ(x)

n

n∑
k=1

V

(
gx;x−

1 + x

k
, x+

1− x

k

)
+

1

2
|f(x−)− f(x+)| |Sn[ψx](w;x)|,

wheref(x+), f(x−) denote the one-sided limits off at the pointx, the functiongx is given by

(1.5) gx(t) :=


f(t)− f(x−) if −1 ≤ t < x,

0 if t = x,

f(t)− f(x+) if x < t ≤ 1

and

(1.6) ψx(t) := sgn x(t) =


1 if t > x,

0 if t = x,

−1 if t < x.

Moreover,ϕ(x) > 0 for x ∈ (−1, 1) andV (gx; a, b) is the total variation ofgx on [a, b].

In this paper, we extend this Bojanic result to the case of measurable and bounded functions
f onI (in symbolsf ∈M(I)). We will estimate the rate of convergence ofSn[f ](w;x) at those
pointsx ∈ I at whichf possesses finite one-sided limitsf(x+), f(x−). In our main estimate
we use the modulus of variationvn(gx; a, b) of the functiongx on some intervals[a, b] ⊂ I. For
positive integersn, the modulus of variation of a functiong on [a, b] is defined by

νn(g; a, b) := sup
πn

n−1∑
k=0

|g(x2k+1)− g(x2k)|,

where the supremum is taken over all systemsπn of n non-overlapping open intervals(x2k, x2k+1) ⊂
(a, b), k = 0, 1, . . . , n − 1 (see [2]). In particular, we obtain estimates for the deviation∣∣Sn[f ](w;x)− 1

2
(f(x+) + f(x−))

∣∣ for functionsf ∈ BVΦ(I). We will say that a function
f , defined on the intervalI belongs to the classBVΦ(I), if

VΦ(f ; I) := sup
π

∑
k

Φ (|f(xk)− f(tk)|) <∞,
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ORTHOGONAL POLYNOMIAL EXPANSIONS 3

where the supremum is taken over all finite systemsπ of non-overlapping intervals(xk, tk) ⊂ I.
It will be assumed thatΦ is a continuous, convex and strictly increasing function on the interval
[0,∞), such thatΦ(0) = 0. The symbolVΦ(f ; a, b) will denote the totalΦ-variation off on the
interval [a, b] ⊂ I. In the special case, ifΦ(u) = up for u ≥ 0 (p ≥ 1), we will write BVp(I)
instead ofBVΦ(I), andVp(f ; a, b) instead ofVΦ(f ; a, b).

2. L EMMAS

In this section we first mention some results which are necessary for proving the main theo-
rem.

Lemma 2.1. Under the assumptions (1.2), (1.3) and (1.4), we have forn ≥ 2∣∣∣∣∫ s

−1

Kn(x, t)w(t)dt

∣∣∣∣ ≤ 4CK

n− 1

(1− x2)−B

x− s
(−1 ≤ s < x < 1),(2.1) ∣∣∣∣∫ 1

s

Kn(x, t)w(t)dt

∣∣∣∣ ≤ 4CK

n− 1

(1− x2)−B

s− x
(−1 < x < s ≤ 1),(2.2) ∫ x

x− 1+x
n

|Kn(x, t)w(t)| dt ≤ 2A+BK3 1 + x

(1− x2)A+2B
(−1 < x < 1),(2.3)

∫ x+ 1−x
n

x

|Kn(x, t)w(t)| dt ≤ 2A+BK3 1− x

(1− x2)A+2B
(−1 < x < 1),(2.4)

|Kn(x, t)w(t)| ≤ 2K3

|x− t|
1

(1− x2)B(1− t2)B+A
(2.5)

if x 6= t, −1 < x < 1, −1 < t < 1.

Proof. In order to prove (2.1), let us observe that by the Christoffel-Darboux formula ([3, p. 26]
or [9, p. 42]) we have

(2.6) Kn(x, t) =
γn−1

γn

pn−1(t)pn(x)− pn−1(x)pn(t)

x− t
.

Using the mean-value theorem and (1.3), we get for−1 ≤ s < x < 1,∣∣∣∣∫ s

−1

Kn(x, t)w(t)dt

∣∣∣∣
≤ γn−1

γn

· K(1− x2)−B

x− s

{∣∣∣∣∫ s

ε

pn−1(t)w(t)dt

∣∣∣∣+ ∣∣∣∣∫ s

η

pn(t)w(t)dr

∣∣∣∣} ,
whereε, η ∈ [−1, s]. From the inequalityγn−1

γn
≤ 1 (see [6, p. 488]) and from the assumption

(1.4) our estimate (2.1) follows immediately.
The proof of (2.2) is similar.
In view of (1.1) and the assumptions (1.2), (1.3), we have∫ x

x− 1+x
n

|Kn(x, t)w(t)| dt ≤ nK3

(1− x2)B

∫ x

x− 1+x
n

dt

(1− t2)A+B

≤ 2A+BK3 1 + x

(1− x2)A+2B
.

In the same way, we get (2.4).
Applying identity (2.6), assumptions (1.2) and (1.3), we can easily prove (2.5). �
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4 MAŁGORZATA POWIERSKA

Lemma 2.2. Suppose thatg ∈ M(I) is equal to zero at a fixed pointx ∈ (−1, 1) and that
assumptions (1.2), (1.3), (1.4) are satisfied withA,B such thatA+B < 1. Then forn ≥ 3

(2.7)

∣∣∣∣∫ 1

x

g(t)Kn(x, t)w(t)dt

∣∣∣∣ ≤ c1
(1− x2)A+2Bn1−(A+B)

n−1∑
j=1

νj(g; tn−j, 1)

j1+A+B

+
c2

(1− x2)1+B

{
n−1∑
j=1

νj(g;x, tj)

j2
+
νn−1(g;x, 1)

n− 1

}
,

wheretj = x+ j(1− x)/n (j = 1, 2, . . . , n), c1 = 8K3/(1− A−B), c2 = 8K(3K2 + 2C).

Proof. Observe that∫ 1

x

g(t)Kn(x, t)w(t)dt(2.8)

=

∫ t1

x

g(t)Kn(x, t)w(t)dt+
n−1∑
j=1

g(tj)

∫ tj+1

tj

Kn(x, t)w(t)dt

+

∫ 1

tn−1

(g(t)− g(tn−1))Kn(x, t)w(t)dt

+
n−2∑
j=1

∫ tj+1

tj

(g(t)− g(tj))Kn(x, t)w(t)dt

= I1 + I2 + I3 + I4, say.

In view of (2.4),

(2.9) |I1| ≤
∫ t1

x

|g(t)− g(x)| |Kn(x, t)w(t)|dt ≤ 2K3(1− x)

(1− x2)A+2B
ν1(g;x, t1).

Applying the Abel transformation we get

I2 = g(t1)
n−1∑
k=1

∫ tk+1

tk

Kn(x, t)w(t)dt+
n−2∑
j=1

(g(tj+1)− g(tj))
n−1∑

k=j+1

∫ tk+1

tk

Kn(x, t)w(t)dt

= (g(t1)− g(x))

∫ 1

t1

Kn(x, t)w(t)dt+
n−2∑
j=1

(g(tj+1)− g(tj))

∫ 1

tj+1

Kn(x, t)w(t)dt.

Next, using the inequality (2.2) and once more the Abel transformation we obtain

|I2| ≤
4CK

(n− 1)(1− x2)B

(
|g(t1)− g(x)|

t1 − x
+

n−2∑
j=1

|g(tj+1)− g(tj)|
1

(tj+1 − x)

)

≤ 4CKn

(n− 1)(1− x2)B(1− x)

{
|g(t1)− g(x)|+

n−2∑
j=1

1

(j + 1)(j + 2)

j∑
k=1

|g(tk+1 − g(tk)|

+
1

n− 1

n−3∑
k=1

|g(tk+1)− g(tk)|

}
.

Hence, in view of the definition of the modulus of variation and its elementary properties,

(2.10) |I2| ≤
8CK

(1− x)(1− x2)B

(
n−1∑
k=1

νk(g;x, tk)

k2
+
νn−1(g;x, 1)

n− 1

)
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(see the proof of Lemma 1 in [8]).
Next, by inequality (2.5),

|I3| ≤
2K3

(1− x2)B
ν1(g; tn−1, 1)

∫ 1

tn−1

dt

(t− x)(1− t2)A+B
(2.11)

≤ 4K3ν1(g; tn−1, 1)

(1− x2)B(1− x)(1 + x)A+B

∫ 1

tn−1

dt

(1− t)A+B

=
4K3ν1(g; tn−1, 1)

(1− x2)A+2Bn1−(A+B)(1− (A+B))

and

|I4| ≤
2K3

(1− x2)B

n−2∑
j=1

∫ tj+1

tj

|g(t)− g(tj)|
(tj − x)(1− tj+1)A+B(1 + tj)A+B

dt

≤ 2K3n1+A+B

(1− x2)A+2B(1− x)

n−2∑
j=1

∫ tj+1

tj

|g(t)− g(tj)|
j(n− j − 1)A+B

dt

=
2K3n1+A+B

(1− x2)A+2B(1− x)

n−2∑
j=1

∫ h

0

|g(s+ tj)− g(tj)|
j(n− j − 1)A+B

dt

=
2K3n1+A+B

(1− x2)A+2B(1− x)

∫ h

0

{
m∑

j=1

|g(s+ tj)− g(tj)|
j(n− j − 1)A+B

+
n−2∑

j=m+1

|g(s+ tj)− g(tj)|
j(n− j − 1)A+B

}
ds,

whereh = (1− x)/n andm = [n/2]. Next, arguing similarly to the proof of the lemma in [7]
(the estimate ofI4) we obtain

(2.12) |I4| ≤
2K3

(1− x2)A+2B

{
2 · 6A+B

n−1∑
j=2

νj(g;x, tj)

j2
+

6A+Bνn−1(g;x, 1)

n− 1

+
4

n1−(A+B)

n−1∑
j=2

νj(g; tn−j, 1)

j1+A+B
+ 2

νn−1(g;x, 1)

n1−(A+B)(n− 1)A+B

}
.

In view of (2.8), (2.9), (2.10), (2.11) and (2.12) we get the desired estimation. �

By symmetry, the analogous estimate for the integral
∫ x

−1
g(t)Kn(x, t)w(t)dt can be deduced

as well. Namely, we have

(2.13)

∣∣∣∣∫ x

−1

g(t)Kn(x, t)w(t)dt

∣∣∣∣ ≤ c1
(1− x2)A+2Bn1−(A+B)

n−1∑
j=1

νj(g;−1, sn−j)

j1+A+B

+
c2

(1− x2)1+B

{
n−1∑
j=1

νj(g; sj, x)

j2
+
νn−1(g;−1, x)

n− 1

}
,

wheresj = x− j(1 + x)/n (j = 1, 2, . . . , n), c1, c2 are the same as in Lemma 2.2.
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3. RESULTS

Suppose thatf ∈M(I) and that at a fixed pointx ∈ (−1, 1) the one-sided limitsf(x+), f(x−)
exist. As is easily seen

(3.1) Sn[f ](w;x)− 1

2
(f(x+) + f(x−)) =

∫ 1

−1

gx(t)Kn(x, t)w(t)dt

+
1

2
(f(x+)− f(x−))Sn[ψx](w;x),

wheregx andψx are defined by (1.5) and (1.6), respectively.
The first term on the right-hand side of identity (3.1) can be estimated via (2.7) and (2.13).

Consequently, we get:

Theorem 3.1. Let w be a weight function and let assumptions (1.2), (1.3), (1.4) be satisfied
withA+ B < 1. If f ∈ M(I) and if the limitsf(x+), f(x−) at a fixedx ∈ (−1, 1) exist, then
for n ≥ 3 we have∣∣∣∣Sn[f ](w;x)− 1

2
(f(x+) + f(x−))

∣∣∣∣(3.2)

≤ c1
(1− x2)A+2Bn1−(A+B)

n−1∑
j=1

νj(gx; tn−j, 1) + νj(gx;−1, sn−j)

j1+A+B

+
c2

(1− x2)1+B

{
n−1∑
j=1

νj(g;x, tj) + νj(gx; sj, x)

j2

+
νn−1(gx;−1, x) + νn−1(gx;x, 1)

n− 1

}
+

1

2
(f(x+)− f(x−))Sn[ψx](w;x),

wheretj, sj, c1, c2 are defined above (in Section 2).

Theorem 3.2.Letf ∈ BVΦ(I) and let assumptions (1.2), (1.3), (1.4) be satisfied withA+B <
1. Then for everyx ∈ (−1, 1), and alln ≥ 3,

(3.3)

∣∣∣∣Sn[f ])w;x)− 1

2
(f(x+) + f(x−))

∣∣∣∣
≤ c3

(1− x2)1+B

n−1∑
k=1

1

k
Φ−1

(
k

n
VΦ

(
gx;x, x+

1− x

k

)
+
k

n
VΦ

(
gx;x−

1 + x

k
, x

))

+
c4(x)

(1− x2)A+2Bn1−(A+B)

n−1∑
k=1

1

kA+B
Φ−1

(
1

k

)
+

1

2
|f(x+)− f(x−)| |Sn[ψx](w;x)|,

wherec3 = 10c2, c4(x) = c1(max{1, VΦ(gx;x, 1)}+ max{1, VΦ(gx;−1, x)}) andΦ−1 denotes
the inverse function ofΦ.

Proof. It is known that, for every positive integerj and for every subinterval[a, b] of [−1, x] (or
[x, 1]),

νj(gx; a, b) ≤ jΦ−1

(
1

j
VΦ(gx; a, b)

)
(see [2, p. 537]). Consequently,

1

n1−(A+B)

n−1∑
j=1

νj(gx, tn−j, 1)

j1+A+B
≤ max{VΦ(gx;x, 1), 1}

n1−(A+B)

n−1∑
j=1

1

jA+B
Φ−1

(
1

j

)
.
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Moreover
n−1∑
j=1

νj(gx;x, tj)

j2
≤ 8

n−1∑
j=1

1

k
Φ−1

(
k

n
VΦ

(
gx;x, x+

1− x

k

))
(see [7, Section 3]). Similarly,

νn−1(gx;x, 1)

n− 1
≤ 2Φ−1

(
VΦ(gx;x, 1)

n

)
≤ 2

n−1∑
k=1

1

k
Φ−1

(
k

n
VΦ

(
gx;x, x+

1− x

k

))
.

Analogous estimates for the other terms in the inequality (3.2), corresponding to the interval
[−1, x], can be obtained as well. Theorem 3.1 and the above estimates give the desired result.

�

Remark 3.3. Since the functiongx is continuous at the pointx, we havelim
t→0

VΦ(gx;x, x+t) = 0.

Consequently, under the additional assumption,

(3.4)
∞∑

k=1

1

k
Φ−1

(
1

k

)
<∞

and

(3.5) lim
n→∞

Sn[ψx](w;x) = 0,

the right-hand side of inequality (3.3) converges to zero asn→∞.

In particular, if f ∈ BVp(I) with p ≥ 1, i.e. if Φ(u) = up for u ≥ 0, then (3.4) holds
true. Moreover, the functionλ defined asλ(t) = f(cos t) is 2π-periodic and of boundedp-th
power variation on[−π, π]. Hence, in view of the theorem of Marcinkiewicz ([5, p. 38]), its
Lp-integral modulus of continuity

ω(λ; δ)p := sup
|h|≤δ

(∫ π

−π

|λ(x+ h)− λ(x)|pdx
)1/p

satisfies the inequality

ω(λ; δ)p ≤ δ1/pVp(λ; 0, 3π) for 0 ≤ δ ≤ π.

Consequently, if1 ≤ p ≤ 2, then

ω(λ; δ)2 ≤ δ1/2V2(λ; 0, 3π) ≤ δ1/2(Vp(λ; 0, 3π))2/p,

which means thatλ ∈ Lip
(

1
2
, 2
)
. Applying now the Freud theorem ([3, V. Theorem 7.5]) we

can easily state that in the case off ∈ BVp(I) with 1 ≤ p ≤ 2, condition (3.5) holds. So, from
Theorem 3.2 we get:

Corollary 3.4. Let w be a weight function satisfying0 < w(x) ≤ M(1 − x2)−1/2 for x ∈
(−1, 1) (M = const.) and let (1.3), (1.4) be satisfied with0 < B < 1/2. If f ∈ BVp(I), where
1 ≤ p ≤ 2, thenSn[f ](w;x) converges to1

2
(f(x+) + f(x−)) at everyx ∈ (−1, 1), wherew is

continuous.

From our theorems we can also obtain some results concerning the rate of uniform conver-
gence ofSn[f ](w;x). Namely, we have:

Corollary 3.5. Let conditions (1.2), (1.3), (1.4) be satisfied withA+B < 1. If f is continuous
on the intervalI and if−1 < a < b < 1, then for allx ∈ [a, b] and all integersn ≥ 3

|Sn[f ](w;x)− f(x)| ≤ c(a, b, A,B)

{
ω

(
f ;

1

n

) m∑
k=1

1

k
+

n∑
k=m+1

νk(f ;−1, 1)

k2

}
,
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whereω(f ; δ) denotes the modulus of continuity off on I, c(a, b, A,B) is a positive constant
depending only ona, b, A,B andm is an arbitrary integer, such thatm < n.

Proof. It is known ([2, 8]) that, for every interval[a, b] ⊂ [−1, 1] and for every positive integer
j,

νj(f ; a, b) ≤ 2jω

(
f ;
b− a

j

)
.

Therefore,

νj(gx; sj, x) ≤ 4jω

(
f ;

1

n

)
, νj(gx;x, tj) ≤ 4jω

(
f ;

1

n

)
and

1

n1−(A+B)

n−1∑
j=1

νj(gx, tn−j, 1) + νj(gx;−1, sn−j)

j1+A+B
≤ 8

1− (A+B)
ω

(
f ;

1

n

)
.

Using the above estimation and inequality (3.2) we get the desired result. �

Clearly, Corollary 3.5 yields some criterions for the uniform convergence of orthogonal poly-
nomial expansions on each compact interval contained in(−1, 1) (cf. [2, 7]).

Finally, let us note that our results can be applied to the Jacobi orthonormal polynomials{
p

(α,β)
n

}
determined via the Jacobi weightw(x) := w(α,β)(x) = (1 − x)α(1 + x)β, where

α > −1, β > −1. In this case, the fulfillment of (1.2) and (1.3) with someA,B follows from
the definition of the weightw(α,β)(x) and from Theorem 8.1 in [3] (Chap. I). Estimate (1.4) can
be verified via the known formula∫ 1

x

p(α,β)
n (t)w(α,β)(t)dt =

(
n

n+ α+ β + 1

) 1
2 (1− x)(α+1)(1 + x)(β+1)

n
p(α+1,β+1)

n (x)

(cf. [6, identity (51)]) and the inequality∣∣∣p(α,β)
n−1 (x)

∣∣∣ ≤ c(α, β)

(
(1− x)1/2 +

1

n

)−α−1/2(
(1 + x)1/2 +

1

n

)−β−1/2

(see e.g. [4, inequality (12)]). Moreover, it was stated by R. Bojanic that in the case of the
Jacobi polynomials condition (3.5) is satisfied (see [6, estimate (12)]).

In particular, our general estimations given in Theorems 3.1, 3.2 and in Corollary 3.4 remain
valid for the Legendre polynomials (see [7]). The rate of pointwise convergence of the Legendre
polynomial expansions for functionsf of bounded variation in the Jordan sense onI (i.e. for
f ∈ BV1(I) was first obtained in [1].
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