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ABSTRACT. It is shown that certain known integral inequalities imply directly a well-known
embedding theorem of Besov spaces.
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In [7] the authors prove a theorem which links estimates on the modulus of continuity of a
real-valued function to the finiteness of a certain integral. Their result reads as follows:

Theorem 1. Let Ψ : R → R+ satisfyΨ(ξ) = Ψ(−ξ), Ψ(∞) = ∞ and Ψ non-decreasing
for ξ ≥ 0. Let p : [−1, 1] → R+ be continuous and satisfyp(ξ) = p(−ξ), p(0) = 0 and p
non-decreasing forξ ≥ 0. Set

Ψ−1(ξ) = sup{η, Ψ(η) ≤ ξ} for ξ ≥ Ψ(0) and(1)

p−1(ξ) = max{η, p(η) ≤ ξ} for 0 ≤ ξ ≤ p(1) .(2)

If one has for a functionf ∈ C([0, 1]) that∫ 1

0

∫ 1

0

Ψ

(
f(x)− f(y)

p(x− y)

)
dx dy ≤ B < ∞,

then one has for alls, t ∈ [0, 1]:

|f(s)− f(t)| ≤ 8

∫ |s−t|

0

Ψ−1

(
4B

ξ2

)
dp(ξ).
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As shown in [6] Theorem 1 can be improved in certain boundary cases. Here we aim to
show that Theorem 1, known as the GRR-lemma, can be used to derive directly an embedding
theorem from certain Besov spaces into the spaces of Hölder continuous functions. Although
this observation is straightforward it is remarkable since the proof of the GRR-lemma is not
very complicated. Moreover one gets a better understanding of the arising constant.

Originally, the authors of [7] apply Theorem 1 to study continuity of Gaussian processes.
Another application of this theorem is an easy derivation of the Kolmogorov-Prohorov criterion
for weak compactness of probability measures or an extension of the Burkholder-Davis-Gundy
inequality, see [4]. A generalized version of Theorem 1 has been obtained in [2] and used
in [8] where upper bounds for the growth of the diameter of a given set exposed in a diffusive
stochastic flow are proved. Then−dimensional version of Theorem 1 reads in one of its possible
forms as follows1:

Theorem 2. Let (X, d) and(Y, ρ) be metric spaces. Letf : X → Y be a continuous function
and letm be a nonnegative Radon measure. Let furtherΨ : R+ → R+ be a right-continuous
function, nondecreasing satisfyingΨ(0) = 0 andΨ(x) > 0 for all x > 0. DefineΨ−1 as in (1).
Assume that:

V :=

∫ ∫
Ψ

(
ρ(f(x), f(y))

d(x, y)

)
m(dx) m(dy) < ∞.

Then one has for allx, y ∈ X:

ρ(f(x), f(y)) ≤ 6

∫ d(x,y)

0

{
Ψ−1

(
4V

m(Br(x))2

)
+ Ψ−1

(
4V

m(Br(y))2

)}
dr.

Note that here the assumptions onΨ vary slightly from the ones made in Theorem 1. Let
us define Sobolev-spaces of fractional order. For a given open connected setΩ ⊂ Rn, and
parameterss ∈ (0, 1), p ≥ 1 the Banach-spaceW (s,p)(Ω) is defined as the set of all functions
f ∈ L2(Ω) for which the norm

‖f‖p
s,p,Ω :=

∫
Ω

|f |p dx +

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dy dx

is finite. These spaces are called Sobolev-Slobodecki spaces and form a special case of the so
called Besov spaces. They appear naturally as trace spaces of Sobolev spaces of integer order
of differentiation and in the study of boundary value problems for partial differential equations.
The monographs [1, 10, 3, 11, 12, 9] are a good choice out of the broad literature on Besov
spaces and embedding theorems.

The following well-known embedding theorem follows from Theorem 2.

Theorem 3. Assume thats ∈
(

1
2
, 1

)
and n

s
< p ≤ n

1−s
. Consider a open connected setΩ ⊂ Rn.

If Ω satisfies the property thatC(Ω) is dense inW (s,p)(Ω) then bounded sets ofW (s,p)(Ω) are
also bounded sets inCα(Ω) with α ≤ s− n

p
.

The assumption thatC(Ω) is dense inW (s,p)(Ω) is satisfied for nice sets likeΩ = Rn. The
assumption stays valid for a wide class of domains, for this subtle matter the reader is referred to
[5, 1, 9, 11, 10]. The theorem holds without the restrictionp ≤ n

1−s
. This is the only concession

to the use of Theorem 2.

Proof of Theorem 3.Choosek = n + sp > 2n. Chooseγ = p
n+sp

. Note thatγ ≤ 1. Choose in
Theorem 2X = Y = Rn, d(x, y) = |x−y|, ρ(x, y) = |x−y|γ. Letm be the Lebesgue measure
supported onΩ. ChooseΨ(z) = zk and note thatΨ satisfies all assumptions in Theorem 2. Let

1The author thanks M. Scheutzow for providing him with his notes on the GRR-lemma.
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S be a set inW s,p(Ω) such that‖f‖s,p,Ω ≤ K. Sincekγ = p the assumptions yield that for
f ∈ S:

V =

∫ ∫
Ψ

(
ρ(f(x), f(y))

d(x, y)

)
m(dx) m(dy) =

∫
Ω

∫
Ω

(
|f(x)− f(y)|γ

|x− y|

)k

dy dx < C.

Theorem 2 now states that for anyx, y ∈ Ω:

|f(x)− f(y)|γ ≤ 12

∫ |x−y|

0

Ψ−1

(
4V

C(n)r2n

)
dr

≤ C(n, k)(4V )
1
k

(
k

k − 2n

)
|x− y|(

k−2n
k ).

This leads to:

|f(x)− f(y)| ≤ C(n, k, V )|x− y|(
k−2n

kγ ) = C(s, p, V )|x− y|s−
n
p .

The theorem is thus proved. �
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