Journal of Inequalities in Pure and Applied Mathematics

CONVOLUTION CONDITIONS FOR SPIRALLIKENESS AND CONVEX SPIRALLIKENESS OF CERTAIN MEROMORPHIC p-VALENT FUNCTIONS

V. RAVICHANDRAN, S. SIVAPRASAD KUMAR, AND K. G. SUBRAMANIAN
Department of Computer Applications
Sri Venkateswara College of Engineering
Pennalur, Sriperumbudur 602 105, India.
vravi@svce.ac.in
Department of Mathematics
Sindhi College
123 P. H. Road, Numbal, Chennai 600 077, India.
sivpk71@yahoo.com
Department of Mathematics Madras Christian College Tambaram, Chennai 600 059, India. kgsmani@vsnl.net

Received 27 October, 2003; accepted 11 December, 2003
Communicated by H. Silverman

Abstract

In the present investigation, the authors derive necessary and sufficient conditions for spirallikeness and convex spirallikeness of a suitably normalized meromorphic p-valent function in the punctured unit disk, using convolution. Also we give an application of our result to obtain a convolution condition for a class of meromorphic functions defined by a linear operator.

[^0]2000 Mathematics Subject Classification Primary 30C45, Secondary 30C80.

1. Introduction

Let Σ_{p} be the class of meromorphic functions

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{n=1-p}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}:=\{1,2,3, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disk

$$
\mathbb{E}^{*}:=\{z: z \in \mathbb{C} \quad \text { and } \quad 0<|z|<1\}=\mathbb{E} \backslash\{0\},
$$

[^1]where $\mathbb{E}:=\{z: z \in \mathbb{C}$ and $|z|<1\}$.
For two functions f and g analytic in \mathbb{E}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{E} and write
$$
f \prec g \quad \text { or } \quad f(z) \prec g(z) \quad(z \in \mathbb{E}),
$$
if there exists a Schwarz function $w(z)$, analytic in \mathbb{E} with
$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{E})
$$
such that
\[

$$
\begin{equation*}
f(z)=g(w(z)) \quad(z \in \mathbb{E}) \tag{1.2}
\end{equation*}
$$

\]

In particular, if the function g is univalent in \mathbb{E}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{E}) \subset g(\mathbb{E})
$$

We define two subclasses of meromorphic p-valent functions in the following:
Definition 1.1. Let $|\lambda|<\frac{\pi}{2}$ and $p \in \mathbb{N}$. Let φ be an analytic function in the unit disk \mathbb{E}. We define the classes $S_{p}^{\lambda}(\varphi)$ and $C_{p}^{\lambda}(\varphi)$ by

$$
\begin{align*}
S_{p}^{\lambda}(\varphi) & :=\left\{f \in \Sigma_{p}: \frac{z f^{\prime}(z)}{f(z)} \prec-p e^{-i \lambda}[\cos \lambda \varphi(z)+i \sin \lambda]\right\} \tag{1.3}\\
C_{p}^{\lambda}(\varphi) & :=\left\{f \in \Sigma_{p}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec-p e^{-i \lambda}[\cos \lambda \varphi(z)+i \sin \lambda]\right\} . \tag{1.4}
\end{align*}
$$

Analogous to the well known Alexander equivalence [2], we have

$$
\begin{equation*}
f \in C_{p}^{\lambda}(\varphi) \Leftrightarrow-\frac{1}{p} z f^{\prime} \in S_{p}^{\lambda}(\varphi) \quad(p \in \mathbb{N}) \tag{1.5}
\end{equation*}
$$

Remark 1.1. For

$$
\begin{equation*}
\varphi(z)=\frac{1+A z}{1+B z} \quad(-1 \leq B<A \leq 1) \tag{1.6}
\end{equation*}
$$

we set

$$
S_{p}^{\lambda}(\varphi)=: S_{p}^{\lambda}[A, B] \quad \text { and } \quad C_{p}^{\lambda}(\varphi)=: C_{p}^{\lambda}[A, B] .
$$

For $\lambda=0$, we write

$$
\begin{array}{rll}
S_{p}^{0}(\varphi)=: S_{p}^{*}(\varphi) & \text { and } \quad C_{p}^{0}(\varphi)=: C_{p}(\varphi), \\
S_{p}^{0}[A, B]=: S_{p}[A, B] \quad \text { and } \quad C_{p}^{0}[A, B]=: C_{p}[A, B] .
\end{array}
$$

For $0 \leq \alpha<1$, the classes $S_{p}^{\lambda}[1-2 \alpha,-1]$ and $C_{p}^{\lambda}[1-2 \alpha,-1]$ reduces to the classes $S_{p}^{\lambda}(\alpha)$ and $C_{p}^{\lambda}(\alpha)$ of meromorphic p-valently λ-spirallike functions of order α and meromorphic p valently λ-convex spirallike functions of order α in \mathbb{E}^{*} respectively:

$$
\begin{aligned}
& S_{p}^{\lambda}(\alpha):=\left\{f \in \Sigma_{p}: \Re\left\{e^{i \lambda} \frac{z f^{\prime}(z)}{f(z)}\right\}<-p \alpha \cos \lambda \quad\left(0 \leq \alpha<1 ;|\lambda|<\frac{\pi}{2}\right)\right\} \\
& C_{p}^{\lambda}(\alpha):=\left\{f \in \Sigma_{p}: \Re\left\{e^{i \lambda}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}<-p \alpha \cos \lambda \quad\left(0 \leq \alpha<1 ;|\lambda|<\frac{\pi}{2}\right)\right\} .
\end{aligned}
$$

The classes $S_{p}^{0}[1-2 \alpha,-1]$ and $C_{p}^{0}[1-2 \alpha,-1]$ reduces to the classes $S_{p}^{*}(\alpha)$ and $C_{p}(\alpha)$ of meromorphic p-valently starlike functions of order α and meromorphic p-valently convex functions of order α in \mathbb{E}^{*} respectively.

For two functions $f(z)$ given by 1.1 and

$$
\begin{equation*}
g(z)=\frac{1}{z^{p}}+\sum_{n=1-p}^{\infty} b_{n} z^{n} \quad(p \in \mathbb{N}) \tag{1.7}
\end{equation*}
$$

the Hadamard product (or convolution) of f and g is defined by

$$
\begin{equation*}
(f * g)(z):=\frac{1}{z^{p}}+\sum_{n=1-p}^{\infty} a_{n} b_{n} z^{n}=:(g * f)(z) . \tag{1.8}
\end{equation*}
$$

Many important properties of certain subclasses of meromorphic p-valent functions were studied by several authors including Aouf and Srivastava [1], Joshi and Srivastava [3], Liu and Srivastava [4], Liu and Owa [5], Liu and Srivastava [6], Owa et al. [7] and Srivastava et al. [9]. Motivated by the works of Silverman et al. [8], Liu and Owa [5] have obtained the following Theorem 1.2 with $\lambda=0$ for the class $S_{p}^{*}(\alpha)$ and Liu and Srivastava [6] have obtained it for the classes $S_{p}^{\lambda}(\alpha)$ (with a slightly different definition of the class).
Theorem 1.2. [6, Theorem 1, p. 14] Let $f(z) \in \Sigma_{p}$. Then

$$
f \in S_{p}^{\lambda}(\alpha) \quad\left(0 \leq \alpha<1 ;|\lambda|<\frac{\pi}{2} ; p \in \mathbb{N}\right)
$$

if and only if

$$
f(z) *\left[\frac{1-\Omega z}{z^{p}(1-z)^{2}}\right] \neq 0 \quad\left(z \in \mathbb{E}^{*}\right)
$$

where

$$
\Omega:=\frac{1+x+2 p(1-\alpha) \cos \lambda e^{-i \lambda}}{2 p(1-\alpha) \cos \lambda e^{-i \lambda}}, \quad|x|=1 .
$$

In the present investigation, we extend the Theorem 1.2 for the above defined class $S_{p}^{\lambda}(\varphi)$. As a consequence, we obtain a convolution condition for the functions in the class $C_{p}^{\lambda}(\varphi)$. Also we apply our result to obtain a convolution condition for a class of meromorphic functions defined by a linear operator.

2. CONVOLUTION CONDITION FOR THE CLASS $S_{p}^{\lambda}(\varphi)$

We begin with the following result for the general class $S_{p}^{\lambda}(\varphi)$:
Theorem 2.1. Let φ be analytic in \mathbb{E} and be defined on $\partial \mathbb{E}:=\{z \in \mathbb{C}:|z|=1\}$. The function $f \in \Sigma_{p}$ is in the class $S_{p}^{\lambda}(\varphi)$ if and only if

$$
\begin{equation*}
f(z) * \frac{1-\Psi z}{z^{p}(1-z)^{2}} \neq 0 \quad\left(z \in \mathbb{E}^{*}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi:=\frac{1+p\left\{1-e^{-i \lambda}[\cos \lambda \varphi(x)+i \sin \lambda]\right\}}{p\left\{1-e^{-i \lambda}[\cos \lambda \varphi(x)+i \sin \lambda]\right\}} \quad\left(|x|=1 ;|\lambda|<\frac{\pi}{2}\right) . \tag{2.2}
\end{equation*}
$$

Proof. In view of 1.3, $f(z) \in S_{p}^{\lambda}(\varphi)$ if and only if

$$
\frac{z f^{\prime}(z)}{f(z)} \neq-p e^{-i \lambda}[\cos \lambda \varphi(x)+i \sin \lambda] \quad\left(z \in \mathbb{E}^{*} ;|x|=1 ;|\lambda|<\frac{\pi}{2}\right)
$$

or

$$
\begin{equation*}
z f^{\prime}(z)+p e^{-i \lambda}[\cos \lambda \varphi(x)+i \sin \lambda] f(z) \neq 0 \quad\left(z \in \mathbb{E}^{*} ;|x|=1 ;|\lambda|<\frac{\pi}{2}\right) \tag{2.3}
\end{equation*}
$$

For $f \in \Sigma_{p}$ given by (1.1), we have

$$
\begin{equation*}
f(z)=f(z) * \frac{1}{z^{p}(1-z)} \quad\left(z \in \mathbb{E}^{*}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
z f^{\prime}(z)=f(z) *\left[\frac{1}{z^{p}(1-z)^{2}}-\frac{p+1}{z^{p}(1-z)}\right] \quad\left(z \in \mathbb{E}^{*}\right) . \tag{2.5}
\end{equation*}
$$

By making use of the convolutions (2.5) and (2.4) in (2.3), we have

$$
\begin{aligned}
& f(z) *\left[\frac{1}{z^{p}(1-z)^{2}}-\frac{p+1}{z^{p}(1-z)}+\frac{p e^{-i \lambda}[\cos \lambda \varphi(x)+i \sin \lambda]}{z^{p}(1-z)}\right] \neq 0 \\
& \quad\left(z \in \mathbb{E}^{*} ;|x|=1 ;|\lambda|<\frac{\pi}{2}\right)
\end{aligned}
$$

or

$$
\left.\begin{array}{rl}
f(z) *\left[\frac{p\left\{e^{-i \lambda}[\cos \lambda \varphi(x)+i \sin \lambda]-1\right\}}{z^{p}(1-z)^{2}}\right. \\
& \left.+\frac{\left[1+p\left\{1-e^{-i \lambda}[\cos \lambda \varphi(x)+i \sin \lambda]\right\}\right] z}{z^{p}(1-z)^{2}}\right]
\end{array} \quad \neq 0\right]
$$

which yields the desired convolution condition (2.1) of Theorem 2.1.
By taking $\lambda=0$ in the Theorem 2.1, we obtain the following result for the class $S_{p}^{*}(\varphi)$.
Corollary 2.2. Let φ be analytic in \mathbb{E} and be defined on $\partial \mathbb{E}$. The function $f \in \Sigma_{p}$ is in the class $f \in S_{p}^{*}(\varphi)$ if and only if

$$
\begin{equation*}
f(z) * \frac{1-\Upsilon z}{z^{p}(1-z)^{2}} \neq 0 \quad\left(z \in \mathbb{E}^{*}\right) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Upsilon:=\frac{1+p(1-\varphi(x))}{p(1-\varphi(x))} \quad(|x|=1) . \tag{2.7}
\end{equation*}
$$

By taking $\varphi(z)=(1+A z) /(1+B z),-1 \leq B<A \leq 1$ in Theorem 2.1, we obtain the following result for the class $S_{p}^{\lambda}[A, B]$.

Corollary 2.3. The function $f \in \Sigma_{p}$ is in the class $S_{p}^{\lambda}[A, B]$ if and only if

$$
\begin{equation*}
f(z) * \frac{1-\Upsilon z}{z^{p}(1-z)^{2}} \neq 0 \quad\left(z \in \mathbb{E}^{*}\right) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Upsilon:=\frac{x-B+p(A-B) \cos \lambda e^{-i \lambda}}{p(A-B) \cos \lambda e^{-i \lambda}} \quad(|x|=1) . \tag{2.9}
\end{equation*}
$$

Remark 2.4. By taking $A=1-2 \alpha, B=-1$ in the above Corollary 2.3, we obtain Theorem 1.2 of Liu and Srivastava [6].

3. CONVOLUTION CONDITION FOR THE CLASS $C_{p}^{\lambda}(\varphi)$

By making use of Theorem 2.1, we obtain a convolution condition for functions in the class $C_{p}^{\lambda}(\varphi)$ in the following:
Theorem 3.1. Let φ be analytic in \mathbb{E} and be defined on $\partial \mathbb{E}$. The function $f \in \Sigma_{p}$ is in the class $C_{p}^{\lambda}(\varphi)$ if and only if

$$
\begin{equation*}
f(z) * \frac{p-[2+p+(p-1) \Psi] z+(p+1) \Psi z^{2}}{z^{p}(1-z)^{2}} \neq 0 \quad\left(z \in \mathbb{E}^{*}\right) \tag{3.1}
\end{equation*}
$$

where Ψ is given by (2.2).
Proof. In view of the Alexander-type equivalence (1.5), we find from Theorem 2.1 that $f \in$ $C_{p}^{\lambda}(\varphi)$ if and only if

$$
z f^{\prime}(z) * \frac{1-\Psi z}{z^{p}(1-z)^{2}}=f(z) * z\left(\frac{1-\Psi z}{z^{p}(1-z)^{2}}\right)^{\prime} \neq 0 \quad\left(z \in \mathbb{E}^{*}\right)
$$

which readily yields the desired assertion (3.1) of Theorem 3.1 .
By taking $\lambda=0$ in the Theorem 3.1, we obtain the following result of the class $C_{p}(\varphi)$.
Corollary 3.2. Let φ be analytic in \mathbb{E} and be defined on $\partial \mathbb{E}$. The function $f \in \Sigma_{p}$ is in the class $f \in C_{p}(\varphi)$ if and only if

$$
\begin{equation*}
f(z) * \frac{p-[2+p+(p-1) \Upsilon] z+(p+1) \Upsilon z^{2}}{z^{p}(1-z)^{2}} \neq 0 \quad\left(z \in \mathbb{E}^{*}\right) \tag{3.2}
\end{equation*}
$$

where Υ is given by (2.7).

4. CONVOLUTION CONDITIONS FOR A CLASS OF FUNCTION DEFINED BY LINEAR OPERATOR

We begin this section by defining a class $\mathcal{T}_{n+p-1}(\varphi)$. First of all for a function $f(z) \in \Sigma_{p}$, define $D^{n+p-1} f(z)$ by

$$
\begin{aligned}
D^{n+p-1} f(z) & =f(z) *\left[\frac{1}{z^{p}(1-z)^{n+p}}\right] \\
& =\frac{\left(z^{n+2 p-1} f(z)\right)^{(n+p-1)}}{(n+p-1)!z^{p}} \\
& =\frac{1}{z^{p}}+\sum_{m=1-p}^{\infty} \frac{(m+n+2 p-1)!}{(n+p-1)!(m+p)!} a_{m} z^{m} .
\end{aligned}
$$

By making use of the operator $D^{n+p-1} f(z)$, we define the class $\mathcal{T}_{n+p-1}(\varphi)$ by

$$
\mathcal{T}_{n+p-1}(\varphi)=\left\{f(z) \in \Sigma_{p}: \frac{D^{n+p} f(z)}{D^{n+p-1} f(z)} \prec \varphi(z)\right\} .
$$

When

$$
\varphi(z)=\frac{1+(1-2 \gamma) z}{1-z}
$$

where

$$
\gamma=\frac{n+p(2-\alpha)}{n+p} \quad(0 \leq \alpha<1)
$$

the class $\mathcal{T}_{n+p-1}(\varphi)$ reduces to the following class $\mathcal{T}_{n+p-1}(\alpha)$ studied by Liu and Owa [5]:

$$
\mathcal{T}_{n+p-1}(\alpha)=\left\{f(z) \in \Sigma_{p}: \Re\left(\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-\frac{n+2 p}{n+p}\right)<-\frac{p \alpha}{n+p}\right\}
$$

By making use of Corollary 2.2, we prove the following result for the class $\mathcal{T}_{n+p-1}(\varphi)$:
Theorem 4.1. The function $f(z) \in \Sigma_{p}$ is in the class $\mathcal{T}_{n+p-1}(\varphi)$ if and only if

$$
\begin{equation*}
f(z) * \frac{1+[(n+p)(1-\Omega)-1] z}{z^{p}(1-z)^{n+p+1}} \neq 0 \quad\left(z \in E^{*} ;|x|=1\right) \tag{4.1}
\end{equation*}
$$

where Ω is given by

$$
\begin{equation*}
\Omega:=\frac{1+(n+p)(\varphi(x)-1)}{(n+p)(\varphi(x)-1)} \quad(|x|=1) \tag{4.2}
\end{equation*}
$$

Proof. By making use of the familiar identity

$$
z\left(D^{n+p-1} f(z)\right)^{\prime}=(n+p) D^{n+p} f(z)-(n+2 p) D^{n+p-1} f(z)
$$

we have

$$
\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{D^{n+p-1} f(z)}=(n+p) \frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-(n+2 p)
$$

and therefore, by using the definition of the class $\mathcal{T}_{n+p-1}(\varphi)$, we see that $f(z) \in \mathcal{T}_{n+p-1}(\varphi)$ if and only if

$$
D^{n+p-1} f(z) \in S_{p}^{*}\left(\frac{n+2 p}{p}-\frac{n+p}{p} \varphi(z)\right)
$$

Then, by applying Corollary 2.2 for the function $D^{n+p-1} f(z)$, we have

$$
\begin{equation*}
D^{n+p-1} f(z) * \frac{1-\Omega z}{z^{p}(1-z)^{2}} \neq 0 \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\Omega & =\frac{1+p\left[1-\left\{\frac{n+2 p}{p}-\frac{n+p}{p} \varphi(x)\right\}\right]}{p\left[1-\left\{\frac{n+2 p}{p}-\frac{n+p}{p} \varphi(x)\right\}\right]} \\
& =\frac{1+(n+p)(\varphi(x)-1)}{(n+p)(\varphi(x)-1)}, \quad|x|=1
\end{aligned}
$$

Since

$$
D^{n+p-1} f(z)=f(z) *\left[\frac{1}{z^{p}(1-z)^{n+p}}\right]
$$

the condition (4.3) becomes

$$
\begin{equation*}
f(z) *\left(g(z) * \frac{1-\Omega z}{z^{p}(1-z)^{2}}\right) \neq 0 \tag{4.4}
\end{equation*}
$$

where

$$
g(z)=\frac{1}{z^{p}(1-z)^{n+p}}
$$

By making use of the convolutions (2.5) and (2.4), it is fairly straight forward to show that

$$
\begin{equation*}
g(z) * \frac{1-\Omega z}{z^{p}(1-z)^{2}}=\frac{1+[(n+p)(1-\Omega)-1] z}{z^{p}(1-z)^{n+p+1}} \tag{4.5}
\end{equation*}
$$

By using (4.5) in (4.4), we see that the assertion in (4.1) follows and thus the proof of our Theorem4.1 is completed.

By taking

$$
\varphi(z)=\frac{1+(1-2 \gamma) z}{1-z}
$$

where

$$
\gamma=\frac{n+p(2-\alpha)}{n+p} \quad(0 \leq \alpha<1)
$$

in our Theorem 4.1, we obtain the following result of Liu and Owa [5]:
Corollary 4.2. The function $f(z) \in \Sigma_{p}$ is in the class $\mathcal{T}_{n+p-1}(\alpha)$ if and only if

$$
f(z) * \frac{1+[(n+p)(1-\Omega)-1] z}{z^{p}(1-z)^{n+p+1}} \neq 0 \quad\left(z \in E^{*} ;|x|=1\right)
$$

where Ω is given by

$$
\Omega=\frac{1+x+2 p(1-\alpha)}{2 p(1-\alpha)} \quad(|x|=1)
$$

REFERENCES

[1] M.K. AOUF and H.M. SRIVASTAVA, A new criterion for meromorphically p-valent convex functions of order α, Math. Sci. Res. Hot. Line, 1(8) (1997), 7-12.
[2] P.L. DUREN, Univalent Functions, In Grundlehren der Mathematischen Wissenschaften, Bd., Volume 259, Springer-Verlag, New York, (1983).
[3] S.B. JOSHI AND H.M. SRIVASTAVA, A certain family of meromorphically multivalent functions, Computers Math. Appl. 38(3/4) (1999), 201-211.
[4] J.-L. LIU AND H.M. SRIVASTAVA, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566-581.
[5] J.-L. LIU AND S. OWA, On a class of meromorphic p-valent functions involving certain linear operators, Internat. J. Math. Math. Sci., 32 (2002), 271-180.
[6] J.-L. LIU AND H.M. SRIVASTAVA, Some convolution conditions for starlikeness and convexity of meromorphically multivalent functions, Applied Math. Letters, 16 (2003), 13-16.
[7] S. OWA, H.E. DARWISH AND M.K. AOUF, Meromorphic multivalent functions with positive and fixed second coefficients, Math. Japon., 46 (1997), 231-236.
[8] H. SILVERMAN, E.M. SILVIA AND D. TELAGE, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Zeitschr., 162 (1978), 125-130.
[9] H.M. SRIVASTAVA, H.M. HOSSEN AND M.K. AOUF, A unified presentation of some classes of meromorphically multivalent functions, Computers Math. Appl. 38 (11/12) (1999), 63-70.

[^0]: Key words and phrases: Meromorphic p-valent functions, Analytic functions, Starlike functions, Convex functions, Spirallike functions, Convex Spirallike functions, Hadamard product (or Convolution), Subordination, Linear operator.

[^1]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 153-03

