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ABSTRACT. Second order lower bounds for the entropy function expressed in terms of the index
of coincidence are derived. Equivalently, these bounds involve entropy and Rényi entropy of
order 2. The constants found either explicitly or implicitly are best possible in a natural sense.
The inequalities developed originated with certain problems in universal prediction and coding
which are briefly discussed.
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1. BACKGROUND, INTRODUCTION

We study probability distributions over the natural numbers. The set of all such distributions
is denoted\/; (N) and the set of” € A/ (N) which are supported bfl, 2, ...,n} is denoted

We uselU,, to denote a generic uniform distribution ovek-alement set, and if alsg; 1,
Ui.o, ... are considered, it is assumed that the supports are increasing. &y by/C we
denote, respectivelgntropyandindex of coincidenge.e.

H(P)==) pilnp,
k=1

IC(P) =Y p};.
k=1
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2 FLEMMING TOPS@E

Results involving index of coincidence may be reformulated in termRéafyi entropy of
order2 (H,) as
Hy(P) = —InIC(P).
In Harremoés and Topsge [5] the exact range of the map (/C(P), H(P)) with P vary-
ing over eithef\/: (n) or M1 (N) was determined. Earlier related work includes Kovalevskij [7],
Tebbe and Dwyer |9], Ben-Bassat [1], Vajda and Vasek [13], Gblic [4] and Feder and Merhav
[2]. The ranges in question, terméd'/ H-diagrams were denoted\, respectivelyA,;:

A= {(IC(P).H(P)) | P € ML(N)},
A, = {(IC(P),H(P)) | P € M!(n)} .

By Jensen’s inequality we find thaf (P) > —InIC(P), thus the logarithmic curve ~
(t,—Int); 0 < t < 1is a lower bounding curve for th&C'/ H-diagrams. The point§), =
(+.Ink); k > 1 all lie on this curve. They correspond to the uniform distributiofs> (U ),
H(Uy)) = (3+,Ink). No other points in the diagraeh lie on the logarithmic curve, in fac)y;
k > 1 are extremal points oA in the sense that the convex hull they determine containso
smaller set has this property.

T
0 1 1
n k+1

= —

Figure 1.1: The restrictedC'/ H-diagramA,,, (n = 5).

Figure[1.1, adapted from[5], illustrates the situation for the restricted diagfamsThe
key result of [5] states thah,, is the bounded region determinated by a certain Jordan curve
determined by, smooth arcs, viz. the “upper arc” connectig and(,, and them — 1 “lower
arcs” connecting),, with Q,,_1, Q,,_1 with Q,,_» etc. untilQ), which is connected witly);.

In [5], see alsol[11], the main result was used to develop concrete upper bounds for the
entropy function. Our concern here will be lower bounds. The study depends crucially on the
nature of the lower arcs. In|[5] these arcs were identified. Indeed, the arc conr@gtingith
Q) is the curve which may be parametrized as follows:

Sy 35((1 — S)Uk+1 + SUk)
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ENTROPY LOWER BOUNDS 3

with s running through the unit interval and withdenoting the/ C'/ H-mapgiven by g(P) =
(IC(P),H(P)); P € M{(N).

The distributions in)/: (N) fall in IC-complexity classes The kth class consists of all
P e ML(N) for which IC(Uy41) < IC(P) < IC(Uy) or, equivalently, for which <
IC(P) < % In order to determine good lower bounds for the entropy of a distributioone
first determines théC-complexity class: of P. One then determines that value 0&]0, 1]
for which IC(P,) = IC(P) with P; = (1 — 8)Uyp41 + sUi. ThenH(P) > H(F;) is the
theoretically best lower bound &f (P) in terms of/C(P).

In order to write the sought lower bounds fBi( P) in a convenient form, we introduce the
kth relative measure of roughnebyg

- IC(P) — IC(Uk41) 1
(1.1) MR (P) = AR AN k(k+1) (IC(P) =" 1) .
This definition applies to anf € A (N) but really, only distributions of C-complexity class
k will be of relevance to us. ClearlW/ R, (Uy,1) = 0, MR, (Uy) = 1 and for any distribution
of IC-complexity class:, 0 < M R,(P) < 1. For a distribution on the lower arc connecting
Qr+1 With Q. one finds that

(12) M_Rk((l — S)UkJrl + S Uk) = 52 .

In view of the above, it follows that for any distributiaR of /C-complexity classt, the
theoretically best lower bound fdf (P) in terms of/C'(P) is given by the inequality

(1.3) H(P) > H((1 — 2)Ups1 + z Uy),

wherez is determined so tha?t and(1 — z)U; + = Uy have the same index of coincidence,
i.e.

(1.4) 2? = MR, (P).

By writing out the right-hand-side of (1.3) we then obtain the best lower bound of the type
discussed. Doing so one obtains a quantity of mixed type, involving logarithmic and rational
functions. It is desirable to search for structurally simpler bounds, getting rid of logarithmic
terms. The simplest and possibly most useful bound of this type is the linear bound

(1.5) H(P) > H(Uy) MRy(P) 4+ H(Ug11)(1 — MRy(P)),

which expresses the fact mentioned above regarding the extremal position of the@pints

in relation to the sef\. Note that[(1.p) is the best linear lower bound as equality holds for

P = Uy, as well as forP = Uy.. Another comment is that though (IL.5) was developed with a

view to distributions off C-complexity class, the inequality holds for alP € M} (N) (but is

weaker than the trivial bounff > — In /C for distributions of other C'-complexity classes).
Writing (1.5) directly in terms of C'(P) we obtain the inequalities

(1.6) H(P) > oy — B IC(P); k>1

with o, andg, given via the constants

a.7) ukzln(l—kl)k:kln(l—kl)
k k

by

ar =In(k+ 1) + uy,
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4 FLEMMING TOPS@E

Note that theu T 1.'|

In the present paper we shall develop sharper inequalities than those above by adding a second
order term. More precisely, fot > 1, we denote byy, the largest constant such that the
inequality

(1.8) H>Ink MR, +In(k+1) (1 - ME,) + g—ZMRk(l _ MR,

holds for all P € M} (N). Here, H = H(P) andM R, = MR, (P). Expressed directly in
terms of/IC' = IC(P), (1.8) states that

Vk 2 1 1
(1.9 H>ap— 6 1C+ 2k(k:+1) (IC k:+1> (k IC)
for P € M1(N).

The basic results of our paper may be summarized as folldhesconstantsy, ).~ increase
withy; =1n4 — 1 = 0.3863 and with limit valuey ~ 0.9640.

More substance will be given to this result by developing rather narrow bounds fog'she
in terms ofy and by other means.

The refined second order inequalities are here presented in their own right. However, we shall
indicate in the next section how the author was led to consider inequalities of this type. This
is related to problems of universal coding and prediction. The reader who is not interested in
these problems can pass directly to Sedtion 3.

2. A PROBLEM OF UNIVERSAL CODING AND PREDICTION

LetA = {a4,...,a,} be afinitealphabet The models we shall consider are defined in terms
of a subsetP of M} (A) and a decompositiofi = {A4;,..., A} of A representingartial
information

A predictor (9-predictor) is a mapP* : A — [0, 1] such that, for each < k, the restriction
Py, is a distribution inM (4;). The predictorP* is induced byr, € M (A), and we write
Py ~ P* if, forall x € A, B, = (P)|a,, the conditional probability of} given A;.

When we think of a predictof* in relation to the modeP, we say thatP* is auniversal
predictor (since the model may contain many distributions) and we measure its performance by
theguaranteed expected redundancy given

(2.1) R(P*) = sup D°(P||P*).

Here,expected redundancy (or divergence) givas defined by

(2:2) D°(P||P*) =) P(A)D(Pa|IF,)
i<k
with D(-||-) denoting standard Kullback-Leibler divergence. By;;,, we denote the quantity

and we say thalP* is theoptimal universal predictor foP givend (or just theoptimal predicto)
if R(P*) = R, andP* is the only predictor with this property.

!Concrete algebraic bounds for thg, which, via [I.6), may be used to obtain concrete lower boundd far),
are given by;2%; < w; < 25 This follows directly from [TF) of[[12] (asx = A(%) in the notation of that
manuscript).
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In parallel to predictors we consider quantities related to coding-cAding strategys a
mapx* : A — [0, co] such that, for each< k, Kraft's equality

(2.4) Z exp(—r*(x)) =1
TEA;

holds. Note that there is a natural one-to-one correspondence, notationally ##itten x*,
between predictors and coding strategies which is given by the relations

(2.5) K"=—InP* and P*=exp(—k").
When P* «— x*, we may apply théinking identity
(2.6) DY(P||P*) = (k*,P) — H’(P)

which is often useful for practical calculations. Hef(P) = >, P(A;)H (P 4,) is standard
conditional entropy ang, P) denotes expectation w.rE.
From Harremoés and Topsge [6] we borrow the following result:

Theorem 2.1 (Kuhn-Tucker criterion) Assume thatd, ..., A,, are distributions inP, that
Py = Zygm a, A, is a convex combination of thé,’s with positive weights which induces the

predictor P*, that, for some finite constait, D’(A, || P*) = R for all v < m and, finally, that

R(P*) < R. _
ThenP* is the optimal predictor and,,,;, = R. Furthermore, the convex setgiven by
(2.7) P ={Pe M (A)|D°(P|P*) <R}

can be characterized as the largest model withas optimal predictor and?,,,;,, = R.

This result is applicable in a great variety of cases. For indications of the proof, see [6] and
Section 4.3 of[[10] The distributions4,, of the result are referred to aschorsand the model
P as themaximal model

The concrete instances of Theorem 2.1 which we shall now discuss have a certain philosophi-
cal flavour which is related to the following general and loosely formulated question: If we think
of “Nature” or “God” as deciding which distributioR € P to choose as the “true” distribution,
and if we assume that the model we consider is really basic and does not lend itself to further
fragmentation, one may ask if any other choice than a uniform distribution is really feasible. In
other words, one may maintain the view that “God only knows the uniform distribution”.

Whether or not the above view can be formulated more precisely and meaningfully, say
within physics, is not that clear. Anyhow, motivated by this kind of thinking, we shall look at
some models involving only uniform distributions. For models based on large alphabets, the
technicalities become quite involved and highly combinatorial. Here we present models with
Ay = {0,1} consisting of the two binary digits as tlseurce alphabet The three uniform
distributions pertaining ta\, are denoted/, and U; for the two deterministic distributions
and Uy, for the uniform distribution oveR\,. For an integet > 2 consider the modeP =
{UE, UL, UL, } with exponentiation indicating product measures. We are interestauiversal
codingor, equivalentlyuniversal predictiorof Bernoulli trialsz} = 1z, - - - 2, € Al from this
model, assuming that partial information corresponding to observatiof ef x; - - -z, for a
fixed s is available. This model is of interest for any integeendt with 0 < s < t. However,
in order to further simplify, we assume that= ¢t — 1. The model we arrive at is then closely
related to the classical “problem of succession” going back to Laplace, cf. Feller [3]. For a
modern treatment, see Krichevsky [8].

IThe former source is just a short proceedings contribution. For various reasons, documentation in the form of
comprehensive publications is not yet available. However, the second source which reveals the character of the
simple proof, may be helpful.
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6 FLEMMING TOPS@E

Common sense has it that the optimal coding strategy and the optimal predictor, respectively
rk* and P*, are given by expressions of the form
ky if a2{=0---00 or 1.--11
(2.8) K(x]) =< ky if 21 =0---01 or 1---10
In2 otherwise
and
pr if 2t=0---00 or 1---11
if 2/=0---01 or 1---10
otherwise

(2.9)

|

*

)_Eﬁm-
I
NI~
(V)

with p; = exp(—k;) andp, = exp(—k2). Note thaip;, is the weightP* assigns to the occurrence
of ¢ binary digits inz! in case only one binary digit occurs itj. Clearly, if both binary digits
occur inz3, it is sensible to predict the following binary digit to b® ar a1l with equal weights
as also shown irj (2.9).
With ¢|s as superscript to indicate partial information we find frpm|(2.6) that

D™ (Ug||P*) = D*(UL||P*) = k1,

DU (UL ||P*) = 27%(ky + kg — In4).
With an eye to Theorein 3.1 we equate these numbers and find that

(210) (28 - 1)%1 = Rg — In4.
Expressed in terms of, andp,, we havep; = 1 — p, and
(211) 4]?2 = (1 —p2)2571 .

Note that[(2.1]1) determines < [0, 1] uniquely for anys.

Itis a simple matter to check that the conditions of Thedrer 2.1 are fulfilled (#itfr} and
Ut, as anchors). With reference to the discussion above, we have then obtained the following
result:

Theorem 2.2. The optimal predictor for prediction af; witht = s+ 1, givenz§ = x; - - -z, for
the Bernoulli modeP = {U{, U}, U{, } is given by(2.9)with p; = 1 — p, andp, determined by
(2.11) Furthermore, for this modeR,,;, = —Inp; = x; and the maximal modeR, consists
of all Q € M, (A}) for which D!*(Q||P*) < k.

It is natural to ask about the type of distributions included in the maximal n®agITheo-
rem[2.2. In particular, we ask, sticking to the framework of a Bernoulli model, which product
distributions are included? Applying (2.6), this is in principle easy to answer. We shall only
comment on the three cases- 1,2, 3.

Fors = 1 or s = 2 one finds that the inequaliti)**(P!||P*) < R,., is equivalent to the
inequality # > In4(1 — IC') which, by [1.6) fork = 1, is known to hold for any distribution.
Accordingly, in these case®, contains every product distribution.

For the cases = 3 the situation is different. Then, as the reader can easily check, the
crucial inequalityD!*(P*||P*) < R, is equivalent to the following inequality (witlhf =
H(P), IC = IC(P)):

(2.12) H>((1-1C) <1n4+(1n2+3/11) (IC’—%)).

This is a second order lower bound of the entropy function of the type discussed in Section
[. In fact this is the way we were led to consider such inequalities. As stated in Sgction 1
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Figure 2.1: A plot ofR,,,;,, — D*>(P!|| P*) as function of with P = (p, q).

and proved rigorously in Lemnja 3.5 of Sect[dn 3, the largest constant which can be inserted
in place of the constanh 2 + x; ~ 1.0438 in (2.12), if we want the inequality to hold for all

P e Mi(Ay),is2y; =2(In4 — 1) ~ 0.7726. Thus [2.1R) doerot hold for all P € M (A).

In fact, considering the difference between the left hand and the right hand dide ¢f (2.12), shown
in Figure, we realize that when= 3, P* with P = (p, q) belongs to the maximal model

if and only if eitherP = Uy, or else one of the probabilitigsor ¢ is smaller than or equal to
some constantf 0.1734).

3. BASIC RESULTS

The key to our results is the inequalify ([L.3) wittdetermined by[(Z]4), This leads to the
following analytical expression foy,:

Lemma 3.1. For k£ > 1 definef}, : [0, 1] — [0, cc] by

2k k+x y 1-w !
_ ——— I (1+ ) -l —2)+2’In 1+ ]| .
fr() x?(l—ﬁ){ k+1 n< +/<;> k+1 n(l —e)+a n( +k)}

Theny, = inf{fi(z) |0 <z < 1}.

LFor the benefit of the reader we point out that this inequality can be derived rather directly fréemtna
of replacementeveloped in[[5]. The relevant part of that lemma is the following resultf I [0,1] — R
is concave/convex (i.e. concave {in¢], convex onf¢, 1] for some¢ € [0,1]), then, for anyP € M1(N),
there existsc > 1 and a convex combinatioR, of U, andU;, such thatF'(Py) < F(P) with F defined by

F(Q) =37 flan); @ € ML(N).
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Proof. By the defining relation[(1]8) and by (1.3) with given by [1.4), recalling also the
relation [1.2), we realize tha, is the infimum over: €]0, 1] of

2k
Writing out the entropy of1 —z) U1 +2Uj, we find that the function defined by this expression
is, indeed, the functionfy. O

It is understood thaf;(x) is defined by continuity forr = 0 andz = 1. An application of
I'Héspitals rule shows that

(3.1) fe(0) =2u, — 1, fi(1) = oco.
Then we investigate the limiting behaviour @f,);>1 for £ — oo.

Lemma 3.2. The pointwise limitf = limy,_., fx exists in[0, 1] and is given by
2(—z —In(1 —x))

(3.2) f(z) = 1+ 1) ; O<zx<l1
with f(0) = 1 and f(1) = oco. Alternatively,

2 = "
(3.3) f(x)sz;nH; 0<z<1]

The simple proof, based directly on Lemina]3.1, is left to the reader. We then investigate
some of the properties gf.

Lemma 3.3. The functionf is convex,f(0) = 1, f(1) = co and f’(0) = —3. The real number
xo = argminf is uniquely determined by one of the following equivalent conditions:
(i) f'(z0) =0,

. 2z0(14-zo—a?
(“) —1H<1 — Ig) = m,

(i) 302 (P + i) @6 =5
One hasry ~ 0.2204 andy =~ 0.9640 with v = f(x¢) = min f.

Proof. By standard differentiation, say based on|3.2), one can evafuaid f'. One also finds
that (i) and (ii) are equivalent. The equivalence with (iii) is based on the expansion

o

L2 ntl n—1\ ,
f(x)_(1+w)2z(n+3+n+2)x

n=0

which follows readily from|[(4).
The convexity, even strict, of follows asf can be written in the form

oo

2 1 1 2 an
f(x>_(§+§'1+x>+zn+2'1+:c’

n=2

easily recognizable as a sum of two convex functions.

The approximate values af, and~ were obtained numerically, based on the expression in
(i). O

The convergence of; to f is in fact increasing:
Lemma 3.4. Foreveryk > 1, fi < fri1.

!or, as a power series i) f(z) =23 07 (—1)"(1 — lpq2)2" With [, = — > 7(—=1)F 1.
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Proof. As a more general result will be proved as part (i) of Thedrem 4.1, we only indicate that

a direct proof involving three times differentiation of the function
1
Ay(z) = §$2(1 — %) (fira(z) = fulx))

is rather straightforward. O
Lemma 3.5.v; =1In4 — 1 ~ 0.3863.

Proof. We wish to find the best (largest) constarstuch that

(3.4) H(P) > Ind- (1 — IC(P)) + 2 (IO(P) _ %) (1—10(P))

holds for allP € M} (N), cf. (1.9), and know that we only need to worry about distributions
P e M1(2). Let P = (p,q) be such a distribution, i.e) < p < 1,¢ =1 — p. Takep as an
independent variable and define the auxiliary functioa h(p) by

h—H—ln4-(1—IC)—2c([C—%> (1-10).

Here,H = —plnp — gqlng andIC = p* + ¢>. Then:
K= +2(p—q)Ind—2e(p — q)(3 — 4IC),
p

h" = _piq +4In4 — 2¢(—10 + 48pq) .
Thush(0) = h() = h(1) = 0, W'(0) = oo, K'(3) = 0 andh/(1) = —occ. Further,h”(1) =
—4+41n4—4c, henceh assumes negative valueg it In4— 1. Assume now that < In4—1.
Thenr”(3) > 0. As k has (at most) two inflection points (follows from the formula ) we
must conclude that > 0 (otherwiseh would have at least six inflection points!).
Thush > 0if ¢ <In4 — 1. Thenh > 0 also holds ifc = In4 — 1. O

The lemma is an improvement over an inequality established in [11] as we shall comment
more on in Sectiohl4.

With relatively little extra effort we can find reasonable bounds for each ofjtlsan terms
of v. What we need is the following lemma:

Lemma3.6.Fork > 1and0 < z < 1,

2k = 1
(3.5 fi(r) = (k+1)(1 — 2?) 2 In 4+ 2
y 1_x2n+1 1 1 +1—x2n 1+ 1
o+ 3 2n+2 om+ 1 k2ntt
and
2 o0 1 1_1,2714—1 1_$2n
(3.6) f(iff)—l_sz;QnJrZ( 2n+3 +2n+1)'

Proof. Based on the expansions

—x—ln(l—x):x2z 9:_2
n

n=0

n
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and
AN 2 (=1)"a"
(k+2)In (1+ k) —rtz nZ:()(nH)(nH)an

(which is also used fok = 1 with x replaced by-z), one readily finds that

—(k+x)1n(1+%> —(1=2)In(l —2) + (k + 1)2°In (1+%)

- (—1)m 1
1+nz_% (n+2)(n+1) kot

-y (n+2 nn+1) ((/;i)ln “)

n:0

Upon writing 1 in the form

=1 1 1
1=
;Zn—l—Z (2n+1+2n+3)

and collecting terms two-by-two, and subsequent division byz? and multiplication by2%,
(3.3) emerges. Clearly, (3.6) follows from (B.5) by taking the limit@®nverges to infinity. [

Putting things together, we can now prove the following result:

Theorem 3.7.We havey; < v, <---,v =In4 — 1 = 0.3863 andv;, — v wherey =~ 0.9640

can be defined as
_ 2 1 1 _
T ot 22(1+ ) D )

Furthermore, for eacht > 1,

(3.7) (1—%)7<%_(1—%+;)

Proof. The first parts follow directly from Lemmas 3.1 —.5. To prove the last statement, note
that, forn > 0,

1 1
> 1-= =
k2n+2 - k2
It then follows from Lemmd 36 thatl + 1)fi > (1— %) f, hencef;, > (1 — 1)f and
Ve > (1 — ) follows.

Similarly, note thatl + £~ *"+Y) < 14 k=2 for n > 1 (and that, fom = 0, the second term in
the summation irf (3]5) vanishes). Then use Le 3.6 to conclud@ that) f;, < (1+ 5) /.
The inequalityy, < (1 — 1+ + )7 follows. O

1—

The discussion contains more results, especially, the bounds|in (3.7) are sharpened.

4. DISCUSSION AND FURTHER RESULTS

Justification:

The justification for the study undertaken here is two-fold: As a study of certain aspects of
the relationship between entropy and index of coincidence — which is part of the wider theme
of comparing one Rényi entropy with another, cf. [5] dnd [14] — and as a preparation for certain
results of exact prediction in Bernoulli trials. Both types of justification were carefully dealt
with in Section$1l and] 2.
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Lower bounds for distributions over two elements:

Regarding Lemma 3.5, the key result proved is really the following inequality for a two-
element probability distributio® = (p, ¢):

(4.2) 4pq (1n2 + (1n2 — %) (1-— 4pq)> < H(p,q).

Let us compare this with the lower bounds contained in the following inequalities proved in
[11]:

npl
(4.2) Inplng <H(p,q) < nlp ;q,
n
(4.3) In2 - 4pg <H(p,q) < In2(4pq)"/ ™*.

Clearly, [4.1) is sharper than the lower bound[in|(4.3). Numerical evidence shows that “nor-
mally” (4.7)) is also sharper than the lower boundin§4.2) but, for distributions close to a deter-
ministic distribution, [(4.R) is in fact the sharper of the two.

More on the convergence ¢f to f:

Although Theoren 3]7 ought to satisfy most readers, we shall continue and derive sharper
bounds than those if (3.7). This will be achieved by a closer study of the fungtioasd
their convergence t¢ ask — oo. By looking at previous results, notably perhaps Lemma
[3.1 and the proof of Theorem 3.7, one gets the suspicion that it is the sequence of functions
(1+ 1)/ rather than the sequence fifs that are well behaved. This is supported by the results
assembled in the theorem below, which, at least for parts (ii) and (iii), are the most cumbersome
ones to derive of the present research:

Theorem 4.1.
() A+ 5)fel frie2fi<3f<3fs<---— f.
(i) For eachk > 1, the functionf — (1 + 1) f is decreasing in0, 1] .

iy Foreachk > 1, the function(1 + §) f./ f is increasing in[0, 1].

The technique of proof will be elementary, mainly via torturous differentiations (which may
be replaced by MAPLE look-ups, though) and will rely also on certain inequalities for the
logarithmic function in terms of rational functions. A sketch of the proof is relegated to the
appendix.

An analogous result appears to hold for convergence from aboye lttdeed, experiments
on MAPLE indicate that1 + % + é)fk | f and that natural analogs of (ii) and (iii) of Theorem
[4.1 hold. However, this will not lead to improved bounds over those derived below in Theorem
4.2.

Refined bounds foy, in terms ofy:
Such bounds follow easily from (ii) and (iii) of Theor¢m4.1:
Theorem 4.2. For eachk > 1, the following inequalities hold:

k 2k 2k +1
4.4 Qur — 1y < < —
(4.4) (2uy )7—7’“—14:+17+k:+1 E+1

k -

Proof. Define constants, andb, by

o= ot (@)= (147) o))

e () frl=)
=B
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Then
1
by < (1+E)7k§7_ak~

Now, by (ii) and (iii) of Theorenji 4]1 and by an application of 'Hopitals rule, we find that

1
QA = (24—%)1%—2,

The inequalities of (4]4) follow. O

Note that another set of inequalities can be obtained by workingswjthinstead ofinf in
the definitions oty andb,. However, inspection shows that the inequalities obtained that way
are weaker than those given by (4.4).

The inequalities[(4]4) are sharper than3.7) of Thedrem 3.7 but less transparent. Simpler
bounds can be obtained by exploiting lower boundspiobtained from lower bounds for
In(1+ z), cf. [12]). One such lower bound is given in footnote [1] and leads to the inequalities

2k — 1 < < k
k1! ==

Of course, the upper bound here is also a consequence of the relatively simple property (i) of
Theorenj 4.]L. Applying sharper bounds of the logarithmic function leads to the bounds

%1 _ _ k - 1
1 == U T etk 1)

(4.5)

(4.6)

APPENDIX

We shall here give an outline of the proof of Theoienj 4.1. We need some auxiliary bounds
for the logarithmic function which are available from [12]. In particular, for the function
defined by

Moy = 2D
one has
(@.7) 2= 0)\) = 15 < Maw) o) + (1—2),

valid for0 <z < 1and0 <y < oo, cf. (16) of [12].
Proof of (i) of Theorerfi 4]1Fix 0 < = < 1 and introduce the parametgr= 1. Put

1

o) = (14 7) T ) + (- - 0

(with £ = i). Then, simple differentiation and an application of the right hand inequality of
(4.7) shows that’ is a decreasing function gfin |0, 1]. This implies the desired result. [

Proof of (ii) of Theoreni 4]1Fix k£ > 1 and putp = f — (1 + 1) f. Theny' can be written in
the form

N 2kx .
¢ (@) = (o).

We have to prove that < 0in [0, 1]. After differentiations, one finds that(0) = (1) =
P'(0) = ¢'(1) = ¢"(0) = 0.
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Furthermore, we claim that”(1) < 0. This amounts to the inequality

y(8+ Ty) . 1
th = —.
T+e)B+3y) 0 VTR

This is valid fory > 0, as may be proved directly or deduced from a known stronger inequality
(related to the functiom, listed in Table 1 of[[12]).

Further differentiation shows that”(0) = —y® < 0. With two more differentiations we find
that

(4.8) In(1 +y) >

+0)(2) 18y° 20y° 6y° (1 —y?) | 249°(1 —¢*)
xr) = — — —
(1+xy)?2 (14 xy)? (1+ zy)* (14 zy)d

Now, if ) assumes positive valuesi|in 1], ©"(z) = 0 would have at least 4 solutions jii, 1],
hencey® would have at least one solution]in 1. In order to arrive at a contradiction, we put
X =1+ xy and note that)® (z) = 0 is equivalent to the equality

—9X3 —10X% - 3(1 — )X +12(1 —9*) = 0.

However, it is easy to show that the left hand side here is upper bounded by a negative number.
Hence we have arrived at the desired contradiction, and conclude tadtin [0, 1]. O

Proof of (iii) of Theoreni 4]J1Again, fix & and put

L 0+ pfi)
v =ty

Then, once more with = +,

(1+zy)In(1 +2y) — 22(1 +y) In(1 + y) — 2y(l — )
y(1 —z)(—x — In(1 — z)) '

(x) =
We will show thaty’ < 0. Write ¢’ in the form

W=—"Y ¢

~ denominatot

where “denominator” refers to the denominator in the expression.fdhen{(0) = £(1) = 0.
Regarding the continuity af at 1 with £(1) = 0, the key fact needed is the limit relation

1
lim In(1 —x) - In +xy:O
z—1- 14y

Differentiation shows tha§’(0) = —2y < 0 and thatt’(1) = co. Further differentiation and
exploitation of the left hand inequality df (4.7) gives:

1 1
" > —10x — 22y — 6
£(w)_y< vy *1—93)
_|_

1 1
>y —12x — 6],
_y( ‘ 1+ 1—x+)

and this quantity is> 0 in [0, 1[. We conclude thag < 0in [0, 1[. The desired result follows.
All parts of Theorenj 4]1 are hereby proved. O
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