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1. Introduction

For two Lebesgue integrable functiofisy : [a,b] — R, consider theCebysev func-
tional:

1 b 1 b b
QD o=y [ et - [ e [ g
b—a a (b — a) a a
In 1934, Grussq] showed that
1
(12) C (gl < 7 (M —m)(N=n),
provided that there exists the real numbers\/, n, N such that

(1.3) m<ft)<M and n<g(t) <N fora.e.tela,bl.

The constan% Is best possible inl(1) in the sense that it cannot be replaced by a
smaller quantity. 5

Another, however less known result, even though it was obtaineCetySev in
1882, B], states that

1
(1.4) C ol < 75 1o 19l (0= a)’,
provided thatf’, ¢’ exist and are continuous ¢ b] and|| f'||, = supsefa |1 (£)]-
The constam;l—2 can be improved in the general case.
The CebySev inequalityl(4) also holds iff,g : [a,b] — R are assumed to be
absolutely continuous anfl, g’ € L. [a, b] while || f'|| , = esssup,e(, 4 [f' ()]

A mixture between Griiss’ result () andCeby&ev's onel(4) is the following
inequality obtained by Ostrowski in 197@®]{

(15) C(f0)l < 5 (b= a) (M = m) g
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provided thatf is Lebesgue integrable and satisfi@s3 while g is absolutely con-
tinuous andy’ € L [a,b] . The constant is best possible ini(5).

The case of euclidean norms of the derivative was considered by A. Lupds in [

in which he proved that

(1.6) CUH) < = 1F g1, (b —a),

_71_2

provided thatf, g are absolutely continuous arfd ¢' € Ls [a,b]. The constan;}—2
is the best possible.
Recently, P. Cerone and S.S. Dragonirijave proved the following results:

1
p P
dt) ,

b
bia/ f(s)ds

provided thatf € L, [a,b] andg € L,[a,b] (p > 1, % —l—% =1;p=1,qg=oco0r

p=00,q=1).
Notice that forg = co,p = 1 in (1.7) we obtain

10 -5 [ 1(s)ds

. 1 b
@7 1C(f9)l < ik llg =l 3—, (/

wherep > 1and; + ;=1 orp = 1andg = oo, and

ft) =

)

1
ess sup
—a t€la,b]

) < i — .
(1.8) |C(f,g)|_;gﬂf{|!g 7 2

b b
@9 (CGgl<intla=le 5= [ (052 [ 1) asar

1 b
<lgllee 35—

b
f<t>—ﬁ/ £ (s)ds| dt

Perturbed Ceby3ev
Functionals

S.S. Dragomir
vol. 9, iss. 3, art. 64, 2008

Title Page
Contents
44 44
< >
Page 4 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au

and if g satisfies {.3), then

I 1 ?
@10 (09l <intlla =l 5= [ (057 [ 1) as|ar

n+ N 1 b

S
1 1 b 1 b

< =m0 - [

The inequality between the first and the last termlin.() has been obtained by
Cheng and Sun ird]. However, the sharpness of the const?nl generalisation for

the abstract Lebesgue integral and the discrete version of it have been obtained in
[2].

For other recent results on the Griss inequality, $pe[8] and [L0] and the
references therein.

The aim of the present paper is to establish Gruss type inequalities for some
perturbedCebysev functionals. For this purpose, two integral representations of the
functionalsC (f, g) — uC' (e,g) andC (£, g) — uC (e, g) — vC (f,e) whenu, v € R
ande (t) =t,t € [a, b] are given.

dt

10 - [ 1(s)ds

dt.
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2. Representation Results

The following representation result can be stated.

Lemma 2.1.If f : [a,b] — R is absolutely continuous di, b] and g is Lebesgue
integrable ona, b], then

@) U= [ [ Qs -0 e
- S.S. Dragomir
for any A € R, where the kernefl) : [a,0]* — R is given by vol. 9,iss. 3, art. 64, 2008
t—b if a<s<t<h,
(2.2) Q(t,s) = _ Title Page
t—a if a<t<s<hb.

Contents
Proof. We observe that fok € R we haveC' (f, \) = 0 and thus it suffices to prove

(2.7) for A = 0. 4 44
By Fubini’s theorem, we have

< >
b b
(2.3) / / Q (t,8) g (s) f'(t)dsdt = / (/ Q(t,s) ) g (s)ds. Page 6 of 22
¢ Go Back
By the definition of@ (¢, s) and integrating by parts, we have successively,
Full Screen
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=(s—a) /f Ydt + (b—s) (s)—/bf(t)dt
=0b—a)f /f
foranys € [a,b].

Now, integrating £.4) multiplied with g (s) overs € [a, b], we deduce R Gy

Functionals

[([etarom)oen- / [0-0s0- [ 10 g0
(b—a) / f(s ds—/a f(S)dS'/a g(s)ds Title Page

=(b—0a)’C(fg) Contents
and the identity is proved. O A 44
Utilising the linearity property of” (-, -) in each argument, we can state the fol- < >
lowing equality: Page 7 of 22
Theorem 2.2.If e : [a,b] — R, e (t) = t, then under the assumptions of Lemma Go Back
we have:
) b b Full Screen
@5) CUh.0)=nC (o) + s [ [ Qo) = A1 0) sl dids s
for any\, u € R, where journal of inequalities
in pure and applied
1 b a-+b mathematics
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The second representation result is incorporated in

Lemma 2.3.1f f, g : [a,b] — R are absolutely continuous dn, b] , then

(2.7) C(f,9) 0 / / K (t,s) g (s)dtds,
where the kernek : [a, b] — R is defined by

K o b—t)(s—a) if a<s<t<b,
i _{ (t—a)(b—s) if a<t<s<b

(2.8)

Proof. By Fubini’s theorem we have

2.9) //Kts g (s) dtds—/ (/Kts )f(t)dt.

By the definition of i and integrating by parts, we have successively:
(2.10) /K (t,8)d (s)ds
/K t S dS—i—/ K t, S
b‘“/a (s—a)g (s >ds+<t—a>/t (b-5)g (5)ds
~ -0 [t-as0- [ s)a
- a) [—(b—t)g(t)—i—/tbg(s)ds]
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=<t—a>/tbg<s>ds—<b—t>/atg<s>ds,

for anyt € [a, b)].
Multiplying (2.10 by f’ (t) and integrating over € [a, b] , we have:

(2 11) / (/ K t S > f/ (t) dt PertErbe(: Celby§ev

_ / {(t—a) /t g (s)ds — (b—1) / 9(s) ds} £ () dt 15 0 5t 08200
= f(t) {(t—a) /tbg(s)ds— (b—1t) /atg(s)ds] i Title Page
~[rw o | yeras— -0 [ ot ds]/dt o
- [r0 [/ s — (=g 0+ [ 95— 0-040)] <

Page 9 of 22
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Theorem 2.4. With the assumptions of Lemr&, we have for any, 1 € R that:

(2.12) C(f,g) = pC (e, 9)+VC

/ / K (t5) [ (t) = 4l g’ (s) — ] dtds.
(b—a)
Proof. Follows by Lemma&2.3 on observing that’ (e, e) = 0 and

C(f—pe,g—ve)=C(f g)—puCe,g)—vC(fe)

foranyu,v € R. O]
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3. Bounds in Terms of Lebesgue Norms of and f’

Utilising the representatior?(5) we can state the following result:

Theorem 3.1. Assume thay : [a,b] — R is Lebesgue integrable oj,b] and

f i [a,b] — R is absolutely continuous dn, b] , then
(3.1) [C(f.9) —nC (e 9)
( 1 ,

(b—a)|lf" = pll inf llg = Yo

3
21/4 (h — a) %
[(q+1<)( j_)g)]l/q £ = wll, nf llg =,

IN

J— _1 /_ ] J—
(b—a) " Ilf" = plly inf llg =1y

\

foranyu € R.

Proof. From (2.5), we have

(3.2) C(f9) - MC (e, g

<lg— X '
< llg = Al 1 uum(b

if /.9 € Lela,b];

if f'.g€ L,[a,bl,

1 1 _ 1.
p>1,5+5—1,

(s) = ALLS" (8) — pl dtds

)| dtds.
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However, by the definition of) we have fora > 1 that

I(a):= /:/:|Q(t,s)|°‘dtds

b t b
:/ (/ ]t—b|ads+/ \t—a\ads>dt
a a t
b

Perturbed Ceby3sev
= [(t - a) (b — t)a + (b — t) (t — a)a] dt Functionalsy
N a . S.S. Dragomir
Since , B vol. 9, iss. 3, art. 64, 2008
o,  (b=a)*
/‘l (t a) (b t) "= (a + 1) (a + 2) Title Page
and b ( b )a+2 Contents
—a
b—1t)(t—a)*dt =
/a ( )(t—a) (a+1)(a+2) <« >
hence p R
2(b—a)*
I{a) = > 1. Page 12 of 22
() (@+1) (Oz—i—2)7 o~ age 12 0
Then we have Go Back
1 bt b—a Full Screen
—(b — )y /a /a 1Q (t, s)| dtds = 7 .

and taking the infimum ovex € R in (3.2), we deduce the first part of (1). journal of inequalities
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Utilising the Holder inequality for double integrals we also have

b b
[ [ 1Qslo ) =N 170 — ol duds

(/°/|@tsWdM§é(l{lmﬂﬁ—xfu%w—uvﬁw)é

B 21/q b— CL)l-‘rf .
[@+1Mq+2WM“g Al 1 = el

which provides, by the first inequality i3 (2), the second part of3(1).
For the last part, we observe thap, ., ;2 |Q (¢, s)| = b —a and then

b b
/"/|@aanmwy—ﬂuwﬂ—uwwssw—anm—Amnf—um.
This completes the proof. m

Remarkl. The above inequality3(1) is a source of various inequalities as will be
shown in the following.

1. For instance, if-oo < m < ¢g(t) < M < oo for a.e. t € [a,b], then
g — 22|, < & (M —m) andlg — =52] < § (M —m) (- @) p>
1. Then for anyu € R we have

(3.3) |C(f,9) —uC (e, g)|
tb—a)M—m)|f —ple ¥ f € Lo la,b];

o=1/p(ph—_qg)1/4 .
T (M —m) |If =, ¥ f € Lyt p>1 P+l =1

3 (M —m)[lf" = plly,

p—2

IA
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which gives fory = 0 that
sb—a)(M-—m)||fll, if f'€Lulab];
2-1/P(b—q) 1/q _ , . ,
34) |C(f.0) <! Tanaors M mWf”'ffEL[ b,
p>1, + =1,

q Y

s (M =m)|If;-

f 00 <4 < f/(t) ST < ooforae.t € [a,b], then| f — L] <

10—~ and||f" - ”*FHP < LD —4|(b—a)"", p > 1. Then we have from
(3.1) that

@5) |C(f.9) - T5-Cleg)
(sb—a)T=yinfllg—¢l  if g€ Lolab]:

1/P(b—a)1/‘1 _ . B .
[(q+1)(q+2)}l/q (F fy) %Ielﬂg Hg SHp If g € LP [a7 b] )

IN

1 1 _ 1.
p>1,5+5—1,

LT —~)inf |lg — .
L=t llg €l

Moreover, if we also assume thatco < m < ¢g(t) < M < oo for a.e.
t € [a,b], then by (8.5 we also deduce:

36) |C(f.0)~ T1-Cleg)
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S(b—a) (T —7) (M —m)

12

IN

21-1/p(h—q) . L
e =N (M =m) p>1, 4 +0=1;
i@ =) (M—=m)(b—a).

Observe that the first inequality i6.() is better than the others.
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4. Bounds in Terms of Lebesgue Norms of’ and ¢’

We have the following result:

Theorem 4.1. Assume thaf, g : [a, b] — R are absolutely continuous da, b], then

(4.1) |C(f.9) —puC(e.g) —vC(fe)l
(5O’ | = pll g =il if f',9" € Loo[a,b];

< { [ertatn ]t g =l g v, W g€ Lylad],

1 1 _ 1.
p>1,1—0+5—1,

Lzl =l Mg =l
foranyu,v € R.
Proof. From (2.12), we have

(4.2) [C(f,g9) —nC (e, 9)—V0(f6

b b
4.3) J(w) ::/ / |K (t,s)|" dtds
b

:/a {/at(b—t)o‘(s—a)ads+/tb(t—a)a(b—s)ads} dt

ail [/ab(b—t)”(t—a)““dt+/ab(t—a)“(b—t)““dt].
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Since

/ab (t—a)’ (b—t)"dt = (b—a)’™ /01 sP (1 —s)%ds

(b—a)’™ " B(p+

hence, by 4.3),

—a
a—+1

)2a+2

J (o) = Ba+1,a+2),

As it is well known that

q
B(p,q+1)=——B(p,q),
( ) e (p;q)

thenforp=a+1,g=a+ 1wehaveB (a+1,a+2) =
Then we have

o) =7

Taking into account that

. 2a+2
@) Bla+1l,a+1),

1
(b—a)*

| [ el @ - allg () - vidds

r

1
(b—a)’

<N = wlloo 19" = Vil

= [If =l g’ = vl (b —a)* B(2,3)

1
=150~ a)’ 1" = pllc Ny =Vl

1,g+1),
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we deduce from4.2) the first part of {.1).
By the Holder integral inequality for double integrals, we have

b b
(4.4) / / K (6, 9)| 1S (£) — sl g () — ] dids

1
b b H
s( [/ |K<t7s>|thds) 1 =l I — v,

(b— a)2q+2 q
= qu—lB(qﬂLl,qu?) Lf = wll, llg" = v,
B(g+1,q+1) .
= - e | 2SN g -

Utilising (4.2) and (¢.4) we deduce the second part &f ).
By the definition of K (¢, s) we have, forn < s <t < b, that

K(t,s):(b—t)(s—a)§(b—t)(t—a)§}l(b—a)Q

and fora <t < s < b, that

K (1) = (t—a)(b—s) < (t—a) (b—1) < { (b—a)’
therefore |
sup |K (t,8)] =~ (b—a)’.
(t,5)€[a.b] 4
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Due to the fact that

ﬁ//’K(taS)Hf/(t)—MHg/(s)—V\dtds

< o 1K) G [ 10—l () vl deds

(t,s)€lab] o~
1 Perturbeq CebySev
— Z_l ||f/ . M||1 ||g/ o V||1 ’ Functlonals-
S.S. Dragomir
then from ¢.2) we obtain the last part of!(1). O vol. 9, iss. 3, art. 64, 2008
Remark2. Wheny = v = 0, we obtain from {.1) the following Griss type .
inequalities: Title Page
2 . Contents
(5= a) (| Flo 19l if f',9" € Lo [a,b];
) < »
B(g+1,q+1) | ¢ 2 .
(45) [C(£,9) <8 |20 (0= @) | ), ligll, it f.g € Lyla.t)], «
1,1 _ 1.
L g , p>lpty=5h Page 19 of 22
L L gl -
Go Back
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: : Full Screen
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If we assume that there existsI’, ¢, ® such that-co < v < f/(t) < T < o0
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following inequality

@6) |Cfg) - ot Cleg) - P2 (0

1 2
< b0’ T -7 (@-9).

We also observe that the constaﬁgtis best possible in the sense that it cannot be
replaced by a smaller quantity.

The sharpness of the constant follows by the fact that'fer —y, ® = —¢ we
deduce from4.6) the CebySev inequality which is sharp.
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