Journal of Inequalities in Pure and Applied Mathematics

Volume 6, Issue 4, Article 101, 2005

ON THE HOMOGENEOUS FUNCTIONS WITH TWO PARAMETERS AND ITS MONOTONICITY

ZHEN-HANG YANG
Zhejiang Electric Power Vocational Technical College
Hangzhou, Zhejiang, China, 311600
Yzhkm@163.com

Received 18 May, 2005; accepted 04 August, 2005
Communicated by P.S. Bullen

Abstract

Suppose $f(x, y)$ is a positive homogeneous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, call $H_{f}(a, b ; p, q)=\left[\frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}\right]^{\frac{1}{p-q}}$ homogeneous function with two parameters. If $f(x, y)$ is 2nd differentiable, then the monotonicity in parameters p and q of $H_{f}(a, b ; p, q)$ depend on the signs of $I_{1}=(\ln f)_{x y}$, for variable a and b depend on the sign of $I_{2 a}=\left[(\ln f)_{x} \ln (y / x)\right]_{y}$ and $I_{2 b}=\left[(\ln f)_{y} \ln (x / y)\right]_{x}$ respectively. As applications of these results, a serial of inequalities for arithmetic mean, geometric mean, exponential mean, logarithmic mean, power-Exponential mean and exponential-geometric mean are deduced.

Key words and phrases: Homogeneous function with two parameters, f-mean with two-parameter, Monotonicity, Estimate for lower and upper bounds.

2000 Mathematics Subject Classification. Primary 26B35, 26E60; Secondary 26A48, 26 D07.

1. Introduction

The so-called two-parameter mean or extended mean values between two unequal positive numbers a and b were defined first by K.B. Stolarsky in [10] as

$$
E(a, b ; p, q)=\left\{\begin{array}{ll}
\left(\frac{q\left(a^{p}-b^{p}\right)}{p\left(a^{q}-b^{q}\right)}\right)^{\frac{1}{p-q}} & p \neq q, p q \neq 0 \tag{1.1}\\
\left(\frac{a^{p}-b^{p}}{p(\ln a-\ln b)}\right)^{\frac{1}{p}} & p \neq 0, q=0 \\
\left(\frac{a^{q}-b^{q}}{q(\ln a-\ln b)}\right)^{\frac{1}{q}} & p=0, q \neq 0 \\
\exp \left(\frac{a^{p} \ln a-b^{p} \ln b}{a^{p}-b^{p}}-\frac{1}{p}\right) & p=q \neq 0 \\
\sqrt{a b} & p=q=0
\end{array} .\right.
$$

ISSN (electronic): 1443-5756
(C) 2005 Victoria University. All rights reserved.

Thanks for Mr. Zhang Zhihua.
155-05

The monotonicity of $E(a, b ; p, q)$ has been researched by E. B. Leach and M. C. Sholander in [4], and others also in [9, 8, 7, 6, 5, 11, 14, 15, 17] using different ideas and simpler methods.

As the generalized power-mean, C. Gini obtained a similar two-parameter type mean in [1]. That is:

$$
G(a, b ; p, q)=\left\{\begin{array}{ll}
\left(\frac{a^{p}+b^{p}}{a^{q}+b^{q}}\right)^{\frac{1}{p-q}} & p \neq q \tag{1.2}\\
\exp \left(\frac{a^{p} \ln a+b^{p} \ln b}{a^{p}+b^{p}}\right) & p=q \neq 0 . \\
\sqrt{a b} & p=q=0
\end{array} .\right.
$$

Recently, the sufficient and necessary conditions comparing the two-parameter mean with the Gini mean were put forward by using the so-called concept of "strong inequalities" ([3]).

From the above two-parameter type means, we find that their forms are both $\left(\frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}\right)^{\frac{1}{p-q}}$, where $f(x, y)$ is a homogeneous function of x and y.

The main aim of this paper is to establish the concept of "two-parameter homogeneous functions", and study the monotonicity of functions in the form of $\left(\frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}\right)^{\frac{1}{p-q}}$. As applications of the main results, we will deduce three inequality chains which contain the arithmetic, geometric, exponential, logarithmic, power-exponential and exponential-geometric means, prove an upper bound for the Stolarsky mean in [12], and present two estimated expressions for the exponential mean.

2. Basic Concepts and Main Results

Definition 2.1. Assume that $f: \mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right) \rightarrow \mathbb{R}_{+}$is a homogeneous function of variable x and y, and is continuous and exists first order partial derivative, $(a, b) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$with $a \neq b$, $(p, q) \in \mathbb{R} \times \mathbb{R}$. If $(1,1) \notin \mathbb{U}$, then we define

$$
\begin{align*}
& \mathcal{H}_{f}(a, b ; p, q)=\left[\frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}\right]^{\frac{1}{p-q}} \quad(p \neq q, p q \neq 0), \tag{2.1}\\
& \mathcal{H}_{f}(a, b ; p, p)=\lim _{q \rightarrow p} \mathcal{H}_{f}(a, b ; p, q)=G_{f, p}(a, b) \quad(p=q \neq 0), \tag{2.2}
\end{align*}
$$

where

$$
\begin{equation*}
G_{f, p}(a, b)=G_{f}^{\frac{1}{p}}\left(a^{p}, b^{p}\right), G_{f}(x, y)=\exp \left[\frac{x f_{x}(x, y) \ln x+y f_{y}(x, y) \ln y}{f(x, y)}\right] \tag{2.3}
\end{equation*}
$$

$f_{x}(x, y)$ and $f_{y}(x, y)$ denote partial derivative to 1st and 2nd variable of $f(x, y)$ respectively.
If $(1,1) \in \mathbb{U}$, then define further

$$
\begin{align*}
& \mathcal{H}_{f}(a, b ; p, 0)=\left[\frac{f\left(a^{p}, b^{p}\right)}{f(1,1)}\right]^{\frac{1}{p}} \quad(p \neq 0, q=0), \tag{2.4}\\
& \mathcal{H}_{f}(a, b ; 0, q)=\left[\frac{f\left(a^{q}, b^{q}\right)}{f(1,1)}\right]^{\frac{1}{q}} \quad(p=0, q \neq 0), \tag{2.5}\\
& \mathcal{H}_{f}(a, b ; 0,0)=\lim _{p \rightarrow 0} \mathcal{H}_{f}(a, b ; p, 0)=a^{\frac{f_{x}(1,1)}{f(1,1)}} b^{f_{y}(1,1)} \quad(1,1) \tag{2.6}
\end{align*} \quad(p=q=0) . .
$$

From Lemma 3.1, $\mathcal{H}_{f}(a, b ; p, q)$ is still a homogeneous function of positive numbers a and b. We call it a homogeneous function for positive numbers a and b with two parameters p and q, and call it a two-parameter homogeneous function for short. To avoid confusion, we also denote it by $\mathcal{H}_{f}(p, q)$ or $\mathcal{H}_{f}(a, b)$ or \mathcal{H}_{f}.

If $f(x, y)$ is a positive 1 -order homogeneous mean function defined on $\mathbb{R}_{+} \times \mathbb{R}_{+}$, then call $\mathcal{H}_{f}(a, b ; p, q)$ the two-parameter f-mean of positive numbers a and b.

Remark 2.1. If $f(x, y)$ is a positive 1 -order homogeneous function defined on $\mathbb{R}_{+} \times \mathbb{R}_{+}$, and is continuous and exists 1st order partial derivative, and satisfies $f(x, y)=f(y, x)$, then

$$
G_{f, 0}(a, b)=\mathcal{H}_{f}(a, b ; 0,0)=\sqrt{a b} .
$$

In fact, by (2.3), we have

$$
G_{f, 0}(a, b)=\exp \left[\frac{f_{x}(1,1) \ln a+f_{y}(1,1) \ln b}{f(1,1)}\right]=\mathcal{H}_{f}(a, b ; 0,0) .
$$

Since $f(x, y)$ is a positive 1 -order homogeneous function, from 3.1) of Lemma 3.2, we obtain

$$
\begin{equation*}
\frac{1 \cdot f_{x}(1,1)}{f(1,1)}+\frac{1 \cdot f_{y}(1,1)}{f(1,1)}=1 \tag{2.7}
\end{equation*}
$$

If $f(x, y)=f(y, x)$, then $f_{x}(x, y)=f_{y}(y, x)$, so we have

$$
\begin{equation*}
f_{x}(1,1)=f_{y}(1,1) . \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8), we get

$$
\frac{f_{x}(1,1)}{f(1,1)}=\frac{f_{y}(1,1)}{f(1,1)}=\frac{1}{2},
$$

thereby $G_{f, 0}=\sqrt{a b}$.
Thus it can be seen that despite the form of $f(x, y)$ we always have $\mathcal{H}_{f}(a, b ; 0,0)=G_{f, 0}(a, b)=$ $\sqrt{a b}$, so long as $f(x, y)$ is a positive 1 -order homogeneous symmetric function defined on $\mathbb{R}_{+} \times \mathbb{R}_{+}$.

Example 2.1. In Definition 2.1, let $f(x, y)=L(x, y)=\frac{x-y}{\ln x-\ln y}(x, y>0, x \neq y)$, we get (1.1), i.e.

$$
\mathcal{H}_{L}(a, b ; p, q)=\left\{\begin{array}{ll}
\left(\frac{q\left(a^{p}-b^{p}\right)}{p\left(a^{q}-b^{q}\right)}\right)^{\frac{1}{p-q}} & p \neq q, p q \neq 0 \tag{2.9}\\
L^{\frac{1}{p}}\left(a^{p}, b^{p}\right) & p \neq 0, q=0 \\
L^{\frac{1}{q}}\left(a^{q}, b^{q}\right) & p=0, q \neq 0 \\
G_{L, p}(a, b) & p=q \neq 0 \\
G(a, b) & p=q=0
\end{array},\right.
$$

where

$$
\begin{gathered}
G_{L, p}(a, b)=E_{p}(a, b)=E^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=E_{p}, \\
E(a, b)=e^{-1}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}}, \quad G(a, b)=\sqrt{a b} .
\end{gathered}
$$

Remark 2.2. That

$$
E(a, b)=e^{-1}\left(\frac{a^{a}}{b^{b}}\right)^{\frac{1}{a-b}} \quad(a, b>0 \text { with } a \neq b)
$$

is called the exponential mean of unequal positive numbers a and b, and is also called the identical mean and denoted by $I(a, b)$. To avoid confusion, we adopt our terms and notations in what follows.

Example 2.2. In Definition 2.1, let $f(x, y)=A(x, y)=\frac{x+y}{2}(x, y>0, x \neq y)$, we get 1.2 , i.e.

$$
\mathcal{H}_{A}(a, b ; p, q)= \begin{cases}\left(\frac{a^{p}+b^{p}}{a^{q}+b^{q}}\right)^{\frac{1}{p-q}} & p \neq q \tag{2.10}\\ G_{A, p}(a, b) & p=q \neq 0 \\ G(a, b) & p=q=0\end{cases}
$$

where $G_{A, p}(a, b)=Z_{p}(a, b)=Z^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=Z_{p} . \quad Z(a, b)=a^{\frac{a}{a+b}} b^{\frac{b}{a+b}}$ is called the powerexponential mean between positive numbers a and b.

Example 2.3. In Definition 2.1, let $f(x, y)=E(x, y)=e^{-1}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}}(x, y>0, x \neq y)$, then

$$
\mathcal{H}_{E}(a, b ; p, q)= \begin{cases}\left(\frac{E\left(a^{p}, b^{p}\right)}{E\left(a^{q}, b^{q}\right)}\right)^{\frac{1}{p-q}} & p \neq q \tag{2.11}\\ G_{E, p}(a, b) & p=q \neq 0 \\ G(a, b) & p=q=0\end{cases}
$$

where $G_{E, p}(a, b)=Y_{p}(a, b)=Y^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=Y_{p} . Y(a, b)=E e^{1-\frac{G^{2}}{L^{2}}}$ is called the exponentialgeometric mean between positive numbers a and b, where $E=E(a, b), L=L(a, b), G=$ $G(a, b)$.

Example 2.4. In Definition 2.1, let $f(x, y)=D(x, y)=|x-y|(x, y>0, x \neq y)$, then

$$
\mathcal{H}_{D}(a, b ; p, q)= \begin{cases}\left|\frac{a^{p}-b^{p}}{a^{q}-b^{q}}\right|^{\frac{1}{p-q}} & p \neq q, p q \neq 0 \tag{2.12}\\ G_{D, p}(a, b) & p=q \neq 0\end{cases}
$$

where $G_{D, p}(a, b)=G_{D, p}=e^{\frac{1}{p}} E^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=e^{\frac{1}{p}} E_{p}$.
In order to avoid confusion, we rename $\mathcal{H}_{L}(a, b ; p, q)$ (or $\left.E(a, b ; p, q)\right)$ and $\mathcal{H}_{A}(a, b ; p, q)$ (or $G(a, b ; p, q))$ as the two-parameter logarithmic mean and two-parameter arithmetic mean respectively. In the same way, we call $\mathcal{H}_{E}(a, b ; p, q)$ in Example 2.3 the two-parameter exponential mean.

In Example 2.4, since $D(x, y)=|x-y|$ is not a certain mean between positive numbers x and y, but one absolute value function of difference of two positive numbers, we call $\mathcal{H}_{D}(a, b ; p, q)$ a two-parameter homogeneous function of difference.

It is obvious that the conception of two-parameter homogeneous functions has greatly developed the extension of the concept of two-parameter means.

For monotonicity of two-parameter homogeneous functions $\mathcal{H}_{f}(a, b ; p, q)$, we have the following main results.
Theorem 2.3. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times\right.$ $\left.\mathbb{R}_{+}\right)$, and be second order differentiable. If $I_{1}=(\ln f)_{x y}>(<) 0$, then $\mathcal{H}_{f}(p, q)$ is strictly increasing (decreasing) in both p and q on $(-\infty, 0) \cup(0,+\infty)$.

Corollary 2.4.

(1) $\mathcal{H}_{L}(p, q), \mathcal{H}_{A}(p, q), \mathcal{H}_{E}(p, q)$ are strictly increasing both p and q on $(-\infty,+\infty)$,
(2) $\mathcal{H}_{D}(p, q)$ is strictly decreasing both p and q on $(-\infty, 0) \cup(0,+\infty)$.

Theorem 2.5. Let $f(x, y)$ be a positive 1 -order homogeneous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times\right.$ $\left.\mathbb{R}_{+}\right)$, and be second order differentiable.
(1) If $I_{2 a}=\left[(\ln f)_{x} \ln (y / x)\right]_{y}>(<) 0$, then $\mathcal{H}_{f}(a, b)$ is strictly increasing (decreasing) in a.
(2) If $I_{2 b}=\left[(\ln f)_{y} \ln (x / y)\right]_{x}>(<) 0$, then $\mathcal{H}_{f}(a, b)$ is strictly increasing (decreasing) in b.

Corollary 2.6. $\mathcal{H}_{L}(a, b), \mathcal{H}_{D}(a, b)$ is strictly increasing in both a and b.

3. Lemmas and Proofs of the Main Results

For proving the main results in this article, we need some properties of homogeneous functions in [16]. For convenience, we quote them as follows.

Lemma 3.1. Let $f(x, y), g(x, y)$ be n, m-order homogenous functions over Ω respectively, then $f \cdot g, f / g(g \neq 0)$ are $n+m, n-m$-order homogenous functions over Ω respectively.

If for a certain p with $\left(x^{p}, y^{p}\right) \in \Omega$, and $f^{p}(x, y)$ exists, then $f\left(x^{p}, y^{p}\right), f^{p}(x, y)$ are both np-order homogeneous functions over Ω.

Lemma 3.2. Let $f(x, y)$ be a n-order homogeneous function over Ω, and f_{x}, f_{y} both exist, then f_{x}, f_{y} are both $(n-1)$-order homogeneous functions over Ω, furthermore we have

$$
\begin{equation*}
x f_{x}+y f_{y}=n f \tag{3.1}
\end{equation*}
$$

In particular, when $n=1$ and $f(x, y)$ is second order differentiable over Ω, then

$$
\begin{align*}
x f_{x}+y f_{y} & =f \tag{3.2}\\
x f_{x x}+y f_{x y} & =0 \tag{3.3}\\
x f_{x y}+y f_{y y} & =0 \tag{3.4}
\end{align*}
$$

Lemma 3.3. Let $f(x, y)$ be a positive n-order homogenous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be second order differentiable. Set

$$
T(t)=\ln f\left(a^{t}, b^{t}\right), \text { where } x=a^{t}, y=b^{t}, a, b>0
$$

then

$$
T^{\prime \prime}(t)=-x y I_{1}(\ln b-\ln a)^{2}, \text { where } I_{1}=\frac{\partial^{2} \ln f(x, y)}{\partial x \partial y}=(\ln f)_{x y} .
$$

Proof. Since $f(x, y)$ is a positive n-order homogeneous function, from 3 3.1), we can obtain $x(\ln f)_{x}+y(\ln f)_{y}=n$ or $x(\ln f)_{x}=n-y(\ln f)_{y}, y(\ln f)_{y}=n-x(\ln f)_{x}$, so

$$
\begin{align*}
T^{\prime}(t) & =\frac{a^{t} f_{x}\left(a^{t}, b^{t}\right) \ln a+b^{t} f_{y}\left(a^{t}, b^{t}\right) \ln b}{f\left(a^{t}, b^{t}\right)} \tag{3.5}\\
& =\frac{x f_{x}(x, y) \ln a+y f_{y}(x, y) \ln b}{f(x, y)} \tag{3.6}\\
& =x(\ln f)_{x} \ln a+y(\ln f)_{y} \ln b . \tag{3.7}
\end{align*}
$$

Hence

$$
\begin{aligned}
T^{\prime \prime}(t)= & \frac{\partial T^{\prime}(t)}{\partial x} \frac{d x}{d t}+\frac{\partial T^{\prime}(t)}{\partial y} \frac{d y}{d t} \\
= & {\left[y(\ln f)_{y}(\ln b-\ln a)+n \ln a\right]_{x} a^{t} \ln a } \\
& \quad+\left[x(\ln f)_{x}(\ln a-\ln b)+n \ln b\right]_{y} b^{t} \ln b \\
= & y(\ln f)_{y x}(\ln b-\ln a) x \ln a+x(\ln f)_{x y}(\ln a-\ln b) y \ln b \\
= & -x y(\ln f)_{x y}(\ln b-\ln a)^{2} \\
= & -x y I_{1}(\ln b-\ln a)^{2} .
\end{aligned}
$$

Lemma 3.4. Let $f(x, y)$ be a positive 1 -order homogeneous function defined on $\mathbb{U}\left(\subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}\right)$, and be second order differentiable. Set

$$
S(t)=\frac{t x f_{x}(x, y)}{f(x, y)}, \text { where } x=a^{t}, y=b^{t} a, b>0
$$

then

$$
S^{\prime}(t)=x y I_{2 a} \text {, where } I_{2 a}=\left[(\ln f)_{x} \ln (y / x)\right]_{y} .
$$

Proof.

$$
\begin{aligned}
S^{\prime}(t) & =\frac{x f_{x}(x, y)}{f(x, y)}+t \frac{d}{d t}\left[\frac{x f_{x}(x, y)}{f(x, y)}\right] \\
& =x(\ln f)_{x}+t\left[\frac{\partial\left(x(\ln f)_{x}\right)}{\partial x} \frac{d x}{d t}+\frac{\partial\left(x(\ln f)_{x}\right)}{\partial y} \frac{d y}{d t}\right] \\
& =x(\ln f)_{x}+t\left[\frac{\partial\left(x(\ln f)_{x}\right)}{\partial x} a^{t} \ln a+\frac{\partial\left(x(\ln f)_{x}\right)}{\partial y} b^{t} \ln b\right] \\
& =x(\ln f)_{x}+t\left[x\left(x(\ln f)_{x}\right)_{x} \ln a+y\left(x(\ln f)_{x}\right)_{y} \ln b\right] .
\end{aligned}
$$

By Lemma 3.1, that $x(\ln f)_{x}=\frac{x f_{x}(x, y)}{f(x, y)}$ is a 0 -order homogeneous function, from 3.1 of Lemma 3.2, we obtain $x\left[x(\ln f)_{x}\right]_{x}+y\left[x(\ln f)_{x}\right]_{y}=0$ or $x\left[x(\ln f)_{x}\right]_{x}=-y\left[x(\ln f)_{x}\right]_{y}$, hence

$$
\begin{aligned}
S^{\prime}(t) & =x(\ln f)_{x}+t y\left[x(\ln f)_{x}\right]_{y}(\ln b-\ln a) \\
& =x(\ln f)_{x}+t x y(\ln f)_{x y}(\ln b-\ln a) \\
& =x(\ln f)_{x}+x y(\ln f)_{x y}\left(\ln b^{t}-\ln a^{t}\right) \\
& =x(\ln f)_{x}+x y(\ln f)_{x y}(\ln y-\ln x) \\
& =x y\left[y^{-1}(\ln f)_{x}+(\ln f)_{x y} \ln (y / x)\right] \\
& =x y\left[(\ln f)_{x} \ln (y / x)\right]_{y}=x y I_{2 a} .
\end{aligned}
$$

Based on the above lemmas, then next we will go on proving the main results in this paper.
Proof of Theorem 2.3. Since $\mathcal{H}_{f}(p, q)$ is symmetric with respect to p and q, we only need to prove the monotonicity for p of $\ln \mathcal{H}_{f}$.

1) When $p \neq q$,

$$
\begin{aligned}
\ln \mathcal{H}_{f} & =\frac{1}{p-q} \ln \frac{f\left(a^{p}, b^{p}\right)}{f\left(a^{q}, b^{q}\right)}=\frac{T(p)-T(q)}{p-q} \\
\frac{\partial \ln \mathcal{H}_{f}}{\partial p} & =\frac{(p-q) T^{\prime}(p)-T(p)+T(q)}{(p-q)^{2}}
\end{aligned}
$$

Set $g(p)=(p-q) T^{\prime}(p)-T(p)+T(q)$, then $g(q)=0, g^{\prime}(p)=(p-q) T^{\prime \prime}(p)$, and then exist $\xi=q+\theta(p-q)$ with $\theta \in(0,1)$ by Mean-value Theorem, such that

$$
\frac{\partial \ln \mathcal{H}_{f}}{\partial p}=\frac{g(p)-g(q)}{(p-q)^{2}}=\frac{g^{\prime}(\xi)}{p-q}=\frac{(\xi-q) T^{\prime \prime}(\xi)}{p-q}=(1-\theta) T^{\prime \prime}(\xi)
$$

By Lemma 3.3, $T^{\prime \prime}(\xi)=-x y I_{1}(\ln b-\ln a)^{2}, x=a^{\xi}, y=b^{\xi}$. Obviously, when $I_{1}<(>) 0$, we get $\frac{\partial \ln \mathcal{H}_{f}}{\partial p}>(<) 0$.
2) When $p=q$, from (2.2) and (3.6),

$$
\begin{aligned}
\ln \mathcal{H}_{f} & =\ln G_{f}^{\frac{1}{p}}\left(a^{p}, b^{p}\right)=\frac{x f_{x}(x, y) \ln x+y f_{y}(x, y) \ln y}{f(x, y)}=T^{\prime}(p), \\
\frac{\partial \ln \mathcal{H}_{f}}{\partial p} & =T^{\prime \prime}(p)=-x y I_{1}(\ln b-\ln a)^{2}
\end{aligned}
$$

when $I_{1}<(>) 0$, we get $\frac{\partial \ln \mathcal{H}_{f}}{\partial p}>(<) 0$.
Combining 1) with 2), the proof is completed.
Proof of Corollary 2.4 It follows from Theorem 2.3 that the monotonicity of $\mathcal{H}_{f}(p, q)$ depends on the sign of $I_{1}=(\ln f)_{x y}$.

1) For $f(x, y)=L(x, y)$,

$$
\begin{aligned}
I_{1}=(\ln f)_{x y} & =\frac{1}{(x-y)^{2}}-\frac{1}{x y(\ln x-\ln y)^{2}} \\
& =\frac{1}{x y(x-y)^{2}}\left((\sqrt{x y})^{2}-L^{2}(x, y)\right)
\end{aligned}
$$

By the well-known inequality $L(x, y)>\sqrt{x y}([13])$, we have $I_{1}<0$.
2) For $f(x, y)=A(x, y)$,

$$
I_{1}=(\ln f)_{x y}=-\frac{1}{(x+y)^{2}}<0
$$

3) For $f(x, y)=E(x, y)$,

$$
\begin{aligned}
I_{1}=(\ln f)_{x y} & =\frac{1}{(x-y)^{3}}[2(x-y)-(x+y)(\ln x-\ln y)] \\
& =\frac{2(\ln x-\ln y)}{(x-y)^{3}}\left[L(x, y)-\frac{x+y}{2}\right] .
\end{aligned}
$$

By the well-known inequality $L(x, y)<\frac{x+y}{2}\left([[13])\right.$, we have $I_{1}<0$.
4) For $f(x, y)=D(x, y)$,

$$
I_{1}=(\ln f)_{x y}=\frac{1}{(x-y)^{2}}>0
$$

Applying mechanically Theorem 2.3, we immediately obtain Corollary 2.4 .
Proof of Theorem 2.5 .

1) Since

$$
\frac{\partial \ln \mathcal{H}_{f}}{\partial a}=\frac{1}{p-q}\left[\frac{p a^{p-1} f_{x}\left(a^{p}, b^{p}\right)}{f\left(a^{p}, b^{p}\right)}-\frac{q a^{q-1} f_{x}\left(a^{q}, b^{q}\right)}{f\left(a^{q}, b^{q}\right)}\right]=\frac{S(p)-S(q)}{a(p-q)},
$$

by the Mean-value Theorem, there exists $\xi=q+\theta(p-q)$ with $\theta \in(0,1)$, such that

$$
\frac{\partial \ln \mathcal{H}_{f}}{\partial a}=\frac{S(p)-S(q)}{a(p-q)}=a^{-1} S^{\prime}(\xi)
$$

From Lemma 3.4 $S^{\prime}(\xi)=x y I_{2 a}$, where $x=a^{\xi}, y=b^{\xi}$. Obviously, if $I_{2 a}>0$, then $\frac{\partial \ln \mathcal{H}_{f}}{\partial a}>0$, so $\mathcal{H}_{f}(a, b)$ is strictly increasing in a; If $I_{2 a}<0$, then $\frac{\partial \ln \mathcal{H}_{f}}{\partial a}<0$, so $\mathcal{H}_{f}(a, b)$ is strictly decreasing in a.
2) It can be proved in the same way.

Proof of Corollary 2.6 .

1) For $f(x, y)=L(x, y)$,

$$
I_{2 a}=\left[(\ln f)_{x} \ln (y / x)\right]_{y}=\frac{x / y-1-\ln (x / y)}{(x-y)^{2}} .
$$

By the well-known inequality $\ln x<x-1(x>0, x \neq 1)$, we have $I_{2 a}>0$.
2) For $f(x, y)=D(x, y)$,

$$
I_{2 a}=\left[(\ln f)_{x} \ln (y / x)\right]_{y}=\frac{x / y-1-\ln (x / y)}{(x-y)^{2}}>0
$$

Since $\mathcal{H}_{L}(a, b), \mathcal{H}_{D}(a, b)$ are both symmetric with respect to a and b, applying mechanically Theorem 2.5, we immediately obtain Corollary 2.6 .

4. Some Applications

As direct applications of theorems and lemmas in this paper, we will present several examples as follows.

Example 4.1 (a G-A inequality chain). By 1) of Corollary 2.4, for $f(x, y)=A(x, y), L(x, y)$ and $E(x, y), \mathcal{H}_{f}(p, q)$ are strictly increasing in both p and q. So there are

$$
\begin{align*}
\mathcal{H}_{f}(a, b ; 0,0) & <\mathcal{H}_{f}(a, b ; 1,0)<\mathcal{H}_{f}\left(a, b ; 1, \frac{1}{2}\right) \tag{4.1}\\
& <\mathcal{H}_{f}(a, b ; 1,1)<\mathcal{H}_{f}(a, b ; 1,2)
\end{align*}
$$

From it we can obtain the following inequalities respectively, that are

$$
\begin{align*}
& \sqrt{a b}<L(a, b)<\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2}<E(a, b)<\frac{a+b}{2} \tag{4.2}\\
& \sqrt{a b}<\frac{a+b}{2}<\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right)^{2}<Z(a, b)<\frac{a^{2}+b^{2}}{a+b} \tag{4.3}\\
& \sqrt{a b}<E(a, b)<\left[\frac{E(a, b)}{E(\sqrt{a}, \sqrt{b})}\right]^{2}<Y(a, b)<\frac{E\left(a^{2}, b^{2}\right)}{E(a, b)} \tag{4.4}
\end{align*}
$$

Notice $\frac{E\left(a^{2}, b^{2}\right)}{E(a, b)}=Z(a, b)$, then 4.4 can be written into that

$$
\begin{equation*}
\sqrt{a b}<E(a, b)<Z^{2}(\sqrt{a}, \sqrt{b})<E \exp \left(1-\frac{G^{2}}{L^{2}}\right)<Z(a, b) \tag{4.5}
\end{equation*}
$$

The inequality 4.2 was proved by [13], which shows that can be inserted $L, \frac{A+G}{2}$ and E between G and A, so we call (4.2) the G-A inequality chain. (4.3) and (4.4) are the same in form completely, so we call (4.1) the G-A inequality chain for homogeneous functions.

Remark 4.1. That $\frac{E\left(a^{2}, b^{2}\right)}{E(a, b)}=Z(a, b)$ is a new identical equation for mean. In fact,

$$
\begin{aligned}
E(a, b) Z(a, b) & =e^{-1}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} b^{\frac{b}{b+a}} a^{\frac{a}{b+a}} \\
& =e^{-1} b^{\frac{b}{b+a}+\frac{b}{b-a}} \frac{a}{b+a}-\frac{a}{b-a} \\
& =e^{-1} b^{\frac{2 b^{2}}{b^{2}-a^{2}}} a^{\frac{-2 a^{2}}{b^{2}-a^{2}}} \\
& =e^{-1}\left(\frac{\left(b^{2}\right)^{b^{2}}}{\left(a^{2}\right)^{a^{2}}}\right)^{\frac{1}{b^{2}-a^{2}}}=E\left(a^{2}, b^{2}\right) .
\end{aligned}
$$

It shows that $Z(a, b)$ is not only one "geometric mean", but also one ratio of one exponential mean to another. Thus inequalities involving $Z(a, b)$ may be translated into inequalities involving exponential mean.

Example 4.2 (An estimation for upper bound of Stolarsky mean). From 2) of Corollary 2.4 , we can prove expediently an estimation for the upper bound of the Stolarsky mean presented by [12]:

$$
S_{p}(a, b)<p^{\frac{1}{1-p}}(a+b) \text { with } p>2, \text { where } S_{p}(a, b)=\left(\frac{b^{p}-a^{p}}{p(b-a)}\right)^{\frac{1}{p-1}}
$$

In fact, from 2) of Corollary 2.4, when $p, q \in(-\infty, 0) \cup(0,+\infty), \mathcal{H}_{D}(p, q)$ is strictly decreasing in both p and q, so when $p>2$, we have $\mathcal{H}_{D}(a, b ; 1, p)<\mathcal{H}_{D}(a, b ; 1,2)$.

Notice

$$
\begin{equation*}
\mathcal{H}_{D}(a, b ; p, 1)=\left(\frac{a^{p}-b^{p}}{a-b}\right)^{\frac{1}{p-1}}=p^{\frac{1}{p-1}} S_{p}(a, b) \quad(p>0) \tag{4.6}
\end{equation*}
$$

thus when $p>2$, we obtain $p^{\frac{1}{p-1}} S_{p}(a, b)<2^{\frac{1}{2-1}} S_{2}(a, b)=a+b$, i.e. $S_{p}(a, b)<p^{\frac{1}{1-p}}(a+b)$.
Example 4.3 (Reversed inequalities and estimations for exponential mean). By 1) of Corollary 2.4. $\mathcal{H}_{L}(p, q)$ is strictly increasing in both p and q, so when $p_{1} \in(0,1), p_{2} \in(1,+\infty)$, we have

$$
\mathcal{H}_{L}\left(a, b ; p_{1}, 1\right)<\mathcal{H}_{L}(a, b ; 1,1)<\mathcal{H}_{L}\left(a, b ; p_{2}, 1\right)
$$

i.e.

$$
\begin{equation*}
S_{p_{1}}(a, b)<E(a, b)<S_{p_{2}}(a, b) \tag{4.7}
\end{equation*}
$$

On the other hand, By 2) of Corollary 2.4, when $p, q \in(-\infty, 0) \cup(0,+\infty), \mathcal{H}_{D}(p, q)$ is strictly monotone decreasing in both p and q. So when $p_{1} \in(0,1), p_{2} \in(1,+\infty)$, we have

$$
\begin{equation*}
\mathcal{H}_{D}\left(a, b ; p_{1}, 1\right)>\mathcal{H}_{D}(a, b ; 1,1)>\mathcal{H}_{D}\left(a, b ; p_{2}, 1\right) \tag{4.8}
\end{equation*}
$$

From (4.6), (4.8) can be written into

$$
p_{2}^{\frac{1}{p_{2}-1}} S_{p_{2}}(a, b)<e E(a, b)<p_{1}^{\frac{1}{p_{1}-1}} S_{p_{1}}(a, b)
$$

or

$$
\begin{equation*}
\frac{1}{e} p_{2}^{\frac{1}{p_{2}-1}} S_{p_{2}}(a, b)<E(a, b)<\frac{1}{e} p_{1}^{\frac{1}{p_{1}-1}} S_{p_{1}}(a, b) \tag{4.9}
\end{equation*}
$$

Combining (4.7) with (4.9), we have

$$
\begin{equation*}
S_{p_{1}}(a, b)<E(a, b)<\frac{1}{e} p_{1}^{\frac{1}{p_{1}^{-1}}} S_{p_{1}}(a, b), \text { where } p_{1} \in(0,1) \tag{4.10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{e} p_{2}^{\frac{1}{p_{2}-1}} S_{p_{2}}(a, b)<E(a, b)<S_{p_{2}}(a, b), \text { where } p_{2} \in(1,+\infty) \tag{4.11}
\end{equation*}
$$

In particular, when $p_{1}=\frac{1}{2}, p_{2}=2$, by 4.10, 4.11, we get

$$
\begin{equation*}
\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2}<E(a, b)<\frac{4}{e}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2} \tag{4.12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2}{e}\left(\frac{a+b}{2}\right)<E(a, b)<\frac{a+b}{2} \tag{4.13}
\end{equation*}
$$

The inequalities (4.12) and (4.13) may be denoted simply by

$$
\begin{align*}
\frac{A+G}{2} & <E<\frac{4}{e} \frac{A+G}{2} \tag{4.14}\\
\frac{2}{e} A & <E<A \tag{4.15}
\end{align*}
$$

The inequalities (4.14) and (4.15) make certain a bound of error that exponential mean E are estimated by A or $\frac{A+G}{2}$.

References

[1] C. GINI, Diuna formula comprensiva delle media, Metron, 13 (1938), 3-22.
[2] BAINI GUO, SHIQIN ZHANG and FENG QI, An elementary proof of monotonicity for extend mean values with two parameters, Mathematics in Practice and Theory, 29(2) (1999), 169-173.
[3] P.A. HÄSTÖ, A Montonicity property of ratios of symmetric homogeneous means. J. Inequal. Pure and Appl. Math., 3(5) (2005), Art. 48. [ONLINE http://jipam.vu.edu.au/article. php?sid=223].
[4] E.B. LEACH AND M.C. SHOLANDER, Extended mean values, Amer. Math. Monthly, 85 (1978), 84-90.
[5] E.B. LEACH AND M.C. SHOLANDER, Extended mean values, J. Math. Anal. Appl., 92 (1983), 207-223.
[6] FENG QI, Logarithmic convexities of the extended mean values, J. London Math. Soc., to appear.
[7] FENG QI, Generalized weighted mean values with two parameters, Proceedings of the Royal Society of London, Series, Mathematical, Physical and Engineering Sciences, 454(1978) (1998): 2723-2732.
[8] FENG QI, On a two-parameter family of nonhomogeneous mean values, Tamkang Journal of Mathematics, 29(2) (1998), 155-163.
[9] FENG QI, Generalized abstracted mean values, J. Inequal. Pure and Appl. Math., 1(1) (2000), Art. 4. [ONLINE http://jipam.vu.edu.au/article.php?sid=97].
[10] K.B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag., 48 (1975), 87-92.
[11] MINGBAO SUN, Inequality for two-parameter mean of convex Function, Mathematics in Practice and Theory, 27(3) (1997), 193-197.
[12] MINQI SHI and HUANNAN SHI, An upper bound for extend logarithmic mean, J. Math., 5 (1997), 37-38.
[13] ZHENHANG YANG, Exponential mean and logarithmic mean, Mathematics in Practice and Theory, 4 (1987), 76-78.
[14] ZHENHANG YANG, Inequalities for power mean of convex function, Mathematics in Practice and Theory, 20(1) (1990), 93-96
[15] ZHENHANG YANG, Inequalities for general mean of convex function, Mathematics in Practice and Theory, 33(8) (2003), 136-141.
[16] ZHENHANG YANG, Simple discriminance for convexity of homogeneous functions and applications, Study in College Mathematics, 7(4) (2004), 14-19.
[17] Zs. PALES, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271-281.

