Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 4, Article 146, 2006

ON A CONJECTURE OF QI-TYPE INTEGRAL INEQUALITIES

PING YAN AND MATS GYLLENBERG
Rolf Nevanlinna Institute
Department of Mathematics and Statistics
P.O. Box 68, FIN-00014
University of Helsinki
Finland
ping.yan@helsinki.fi
mats.gyllenberg@helsinki.fi
URL: http://www.helsinki.fi/~mgyllenb/

Received 31 May, 2006; accepted 15 June, 2006
Communicated by L.-E. Persson

AbStract. A conjecture by Chen and Kimball on Qi-type integral inequalities is proven to be true.

Key words and phrases: Integral inequality, Cauchy mean value theorem, Mathematical induction.
2000 Mathematics Subject Classification. 26D15.

Recently, Chen and Kimball [1], studied a very interesting Qi-type integral inequality and proved the following result.

Theorem 1. Let n belong to \mathbb{Z}^{+}. Suppose $f(x)$ has a derivative of the n-th order on the interval $[a, b]$ such that $f^{(i)}(a)=0$ for $i=0,1,2, \ldots, n-1$. If $f^{(n)}(x) \geq \frac{n!}{(n+1)^{(n-1)}}$ and $f^{(n)}(x)$ is increasing, then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{n+2} d x \geq\left[\int_{a}^{b} f(x) d x\right]^{n+1} \tag{1}
\end{equation*}
$$

If $0 \leq f^{(n)}(x) \leq \frac{n!}{(n+1)^{(n-1)}}$ and $f^{(n)}(x)$ is decreasing, then the inequality 11$)$ is reversed.
In this theorem and in the sequel, $f^{(0)}(a)$ stands for $f(a)$.
In [1], Chen and Kimball conjectured that the additional hypothesis on monotonicity in Theorem 1 could be dropped:

[^0]Theorem 2 (Conjecture). Let n belong to \mathbb{Z}^{+}. Suppose $f(x)$ has derivative of the n-th order on the interval $[a, b]$ such that $f^{(i)}(a)=0$ for $i=0,1,2, \ldots, n-1$.
(i) If $f^{(n)}(x) \geq \frac{n!}{(n+1)^{(n-1)}}$, then the inequality (1) holds.
(ii) If $0 \leq f^{(n)}(x) \leq \frac{n!}{(n+1)^{(n-1)}}$, then the inequality $[1]$ is reversed.

In this article, we prove by mathematical induction that the conjecture is true. As a matter of fact, Theorem 2 holds under slightly weaker assumptions (existence of $f^{(n)}(x)$ at the endpoints $x=a, x=b$ is not needed). We start by applying Cauchy's mean value theorem (CMVT) (that is, the statement that for f, g differentiable on (a, b) and continuous on $[a, b]$ there exists a $\xi \in(a, b)$ such that

$$
\left.f^{\prime}(\xi)(g(b)-g(a))=g^{\prime}(\xi)(f(b)-f(a))\right)
$$

to prove the following lemma, which will in turn be used to prove Theorem 2 .
Lemma 3. Let n belong to \mathbb{Z}^{+}. Suppose $f(x)$ has a derivative of the n-th order on the interval (a, b) and $f^{(n-1)}(x)$ is continuous on $[a, b]$ such that $f^{(i)}(a)=0$ for $i=0,1,2, \ldots, n-1$.
(i) If $f^{(n)}(x) \geq \frac{n!}{(n+1)^{(n-1)}}$ for $x \in(a, b)$, then

$$
(f(x))^{n+1} \geq(n+1)\left(\int_{a}^{x} f(s) d s\right)^{n} \quad \text { for } \quad x \in[a, b]
$$

(ii) If $0 \leq f^{(n)}(x) \leq \frac{n!}{(n+1)^{(n-1)}}$ for $x \in(a, b)$, then

$$
(f(x))^{n+1} \leq(n+1)\left(\int_{a}^{x} f(s) d s\right)^{n} \quad \text { for } \quad x \in[a, b]
$$

Proof. First notice that if f is identically 0 , then the statement is trivially true. Suppose that f is not identically 0 on $[a, b]$. Then the assumption implies that $f(x) \geq 0$ for $x \in[a, b]$. If $\int_{a}^{x} f(s) d s=0$ for some $x \in(a, b]$ then $f(s)=0$ for all $s \in[a, x]$. So we can assume that $\int_{a}^{x} f(s) d s>0$ for all $x \in(a, b]$. Otherwise, we can find $a_{1} \in(a, b)$ such that $\int_{a}^{x} f(s) d s=0$ for $x \in\left[a, a_{1}\right]$ and $\int_{a}^{x} f(s) d s>0$ for $x \in\left(a_{1}, b\right)$ and hence we only need to consider f on $\left[a_{1}, b\right]$.
(i) Suppose that $f^{(n)}(x) \geq \frac{n!}{(n+1)^{(n-1)}}$ for $x \in(a, b)$.
(1) $n=1$. By CMVT, for every $x \in(a, b]$, there exists a $b_{1} \in(a, x)$ such that

$$
\frac{(f(x))^{2}}{2 \int_{a}^{x} f(s) d s}=\frac{2 f\left(b_{1}\right) f^{\prime}\left(b_{1}\right)}{2 f\left(b_{1}\right)}=f^{\prime}\left(b_{1}\right) \geq 1 .
$$

So (i) is true for $n=1$.
(2) Suppose that (i) is true for $n=k>1$. We prove that (i) is true for $n=k+1$. It then follows by mathematical induction that (i) is true for $n=1,2, \ldots$.

By CMVT, for every $x \in(a, b]$, there exists a $b_{1} \in(a, x)$ such that

$$
\begin{aligned}
\frac{(f(x))^{k+2}}{(k+2)\left(\int_{a}^{x} f(s) d s\right)^{k+1}} & =\frac{1}{(k+2)}\left(\frac{(f(x))^{\frac{k+2}{k+1}}}{\int_{a}^{x} f(s) d s}\right)^{k+1} \\
& =\frac{1}{(k+2)}\left(\frac{\frac{k+2}{k+1}\left(f\left(b_{1}\right)\right)^{\frac{1}{k+1}} f^{\prime}\left(b_{1}\right)}{f\left(b_{1}\right)}\right)^{k+1} \\
& =\frac{(k+2)^{k}}{(k+1)^{k+1}} \frac{\left(f^{\prime}\left(b_{1}\right)\right)^{k+1}}{\left(f\left(b_{1}\right)^{k}\right.} \\
& =\frac{\left(\left(\frac{k+2}{k+1}\right)^{k} f^{\prime}\left(b_{1}\right)\right)^{k+1}}{(k+1)\left(\int_{a}^{b_{1}}\left(\frac{k+2}{k+1}\right)^{k} f^{\prime}(s) d s\right)^{k}} \geq 1 .
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{d^{k}}{d x^{k}}\left[\left(\frac{k+2}{k+1}\right)^{k} f^{\prime}(x)\right] & =\left(\frac{k+2}{k+1}\right)^{k} f^{(k+1)}(x) \\
& \geq\left(\frac{k+2}{k+1}\right)^{k} \frac{(k+1)!}{(k+2)^{k}} \\
& =\frac{k!}{(k+1)^{k-1}}
\end{aligned}
$$

for $x \in(a, b)$, by the induction assumption that (i) is true for $n=k$.
So (i) is true for $n=1,2, \ldots$.
(ii) The proof of the second part is similar so we leave out the details. This completes the proof of the lemma.

Now we are in a position to prove the conjecture (Theorem 2).
Proof of Conjecture (Theorem 2). As in the proof of Lemma3. we can assume that $\int_{a}^{x} f(s) d s>$ 0 for any $x \in(a, b]$.
(i) Suppose that $f^{(n)}(x) \geq \frac{n!}{(n+1)^{(n-1)}}$ for $x \in(a, b)$. By CMVT and Lemma 3, in case (i), there exists a $b_{1} \in(a, x)$ such that

$$
\frac{\int_{a}^{b}[f(x)]^{n+2} d x}{\left[\int_{a}^{b} f(x) d x\right]^{n+1}}=\frac{\left[f\left(b_{1}\right)\right]^{n+1}}{(n+1)\left[\int_{a}^{b_{1}} f(x) d x\right]^{n}} \geq 1
$$

This proves (i).
(ii) Suppose that $0 \leq f^{(n)}(x) \leq \frac{n!}{(n+1)^{(n-1)}}$ for $x \in(a, b)$.

By CMVT and Lemma 3, in case (ii), there exists a $b_{1} \in(a, x)$ such that

$$
\frac{\int_{a}^{b}[f(x)]^{n+2} d x}{\left[\int_{a}^{b} f(x) d x\right]^{n+1}}=\frac{\left[f\left(b_{1}\right)\right]^{n+1}}{(n+1)\left[\int_{a}^{b_{1}} f(x) d x\right]^{n}} \leq 1
$$

This completes the proof of the conjecture.
As the proofs show, we actually have the following slightly stronger result which is a generalization of Proposition 1.1 in [2] and Theorem 4 and Theorem 5 in [1].

Theorem 4. Let n belong to \mathbb{Z}^{+}. Suppose $f(x)$ has derivative of the n-th order on the interval (a, b) and $f^{(n-1)}(x)$ is continuous on $[a, b]$ such that $f^{(i)}(a)=0$ for $i=0,1,2, \ldots, n-1$.
(i) If $f^{(n)}(x) \geq \frac{n!}{(n+1)^{(n-1)}}$ for $x \in(a, b)$, then the inequality (1) holds.
(ii) If $0 \leq f^{(n)}(x) \leq \frac{n!}{(n+1)^{(n-1)}}$ for $x \in(a, b)$, then the inequality (1) is reversed.

References

[1] Y. CHEN AND J. KIMBALL, Note on an open problem of Feng Qi, J. Inequal. Pure and Appl. Math., 7(1) (2006), Art. 4. [ONLINE: http://jipam.vu.edu.au/article.php?sid=434].
[2] F. QI, Several integral inequalities, J. Inequal. Pure and Appl. Math., 1(2) (2000), Art. 19. [ONLINE: http://jipam.vu.edu.au/article.php?sid=113|.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 Supported by the Academy of Finland.
 155-06

