

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 146, 2006

ON A CONJECTURE OF QI-TYPE INTEGRAL INEQUALITIES

PING YAN AND MATS GYLLENBERG

ROLF NEVANLINNA INSTITUTE DEPARTMENT OF MATHEMATICS AND STATISTICS P.O. BOX 68, FIN-00014 UNIVERSITY OF HELSINKI FINLAND ping.yan@helsinki.fi

mats.gyllenberg@helsinki.fi
URL: http://www.helsinki.fi/~mgyllenb/

Received 31 May, 2006; accepted 15 June, 2006 Communicated by L.-E. Persson

ABSTRACT. A conjecture by Chen and Kimball on Qi-type integral inequalities is proven to be true.

Key words and phrases: Integral inequality, Cauchy mean value theorem, Mathematical induction.

2000 Mathematics Subject Classification. 26D15.

Recently, Chen and Kimball [1], studied a very interesting Qi-type integral inequality and proved the following result.

Theorem 1. Let *n* belong to \mathbb{Z}^+ . Suppose f(x) has a derivative of the *n*-th order on the interval [a, b] such that $f^{(i)}(a) = 0$ for i = 0, 1, 2, ..., n-1. If $f^{(n)}(x) \ge \frac{n!}{(n+1)^{(n-1)}}$ and $f^{(n)}(x)$ is increasing, then

(1)
$$\int_{a}^{b} [f(x)]^{n+2} dx \ge \left[\int_{a}^{b} f(x) dx\right]^{n+1}$$

If $0 \le f^{(n)}(x) \le \frac{n!}{(n+1)^{(n-1)}}$ and $f^{(n)}(x)$ is decreasing, then the inequality (1) is reversed.

In this theorem and in the sequel, $f^{(0)}(a)$ stands for f(a).

In [1], Chen and Kimball conjectured that the additional hypothesis on monotonicity in Theorem 1 could be dropped:

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

Supported by the Academy of Finland.

¹⁵⁵⁻⁰⁶

Theorem 2 (Conjecture). Let n belong to \mathbb{Z}^+ . Suppose f(x) has derivative of the n-th order on the interval [a, b] such that $f^{(i)}(a) = 0$ for i = 0, 1, 2, ..., n - 1.

(i) If
$$f^{(n)}(x) \ge \frac{n!}{(n+1)^{(n-1)}}$$
, then the inequality (1) holds.
(ii) If $0 \le f^{(n)}(x) \le \frac{n!}{(n+1)^{(n-1)}}$, then the inequality (1) is reversed

In this article, we prove by mathematical induction that the conjecture is true. As a matter of fact, Theorem 2 holds under slightly weaker assumptions (existence of $f^{(n)}(x)$ at the endpoints x = a, x = b is not needed). We start by applying Cauchy's mean value theorem (CMVT) (that is, the statement that for f, g differentiable on (a, b) and continuous on [a, b] there exists a $\xi \in (a, b)$ such that

$$f'(\xi)(g(b) - g(a)) = g'(\xi)(f(b) - f(a)))$$

to prove the following lemma, which will in turn be used to prove Theorem 2.

Lemma 3. Let n belong to \mathbb{Z}^+ . Suppose f(x) has a derivative of the n-th order on the interval (a,b) and $f^{(n-1)}(x)$ is continuous on [a,b] such that $f^{(i)}(a) = 0$ for i = 0, 1, 2, ..., n - 1.

(i) If $f^{(n)}(x) \ge \frac{n!}{(n+1)^{(n-1)}}$ for $x \in (a, b)$, then

$$(f(x))^{n+1} \ge (n+1)\left(\int_a^x f(s)ds\right)^n \quad for \quad x \in [a,b].$$

(ii) If $0 \le f^{(n)}(x) \le \frac{n!}{(n+1)^{(n-1)}}$ for $x \in (a, b)$, then

$$(f(x))^{n+1} \le (n+1) \left(\int_a^x f(s) ds \right)^n \quad for \quad x \in [a,b].$$

Proof. First notice that if f is identically 0, then the statement is trivially true. Suppose that f is not identically 0 on [a, b]. Then the assumption implies that $f(x) \ge 0$ for $x \in [a, b]$. If $\int_a^x f(s)ds = 0$ for some $x \in (a, b]$ then f(s) = 0 for all $s \in [a, x]$. So we can assume that $\int_a^x f(s)ds > 0$ for all $x \in (a, b]$. Otherwise, we can find $a_1 \in (a, b)$ such that $\int_a^x f(s)ds = 0$ for $x \in [a, a_1]$ and $\int_a^x f(s)ds > 0$ for $x \in (a_1, b)$ and hence we only need to consider f on $[a_1, b]$. (i) Suppose that $f^{(n)}(x) \ge \frac{n!}{(n+1)^{(n-1)}}$ for $x \in (a, b)$.

(1) n = 1. By CMVT, for every $x \in (a, b]$, there exists a $b_1 \in (a, x)$ such that

$$\frac{(f(x))^2}{2\int_a^x f(s)ds} = \frac{2f(b_1)f'(b_1)}{2f(b_1)} = f'(b_1) \ge 1.$$

So (i) is true for n = 1.

(2) Suppose that (i) is true for n = k > 1. We prove that (i) is true for n = k + 1. It then follows by mathematical induction that (i) is true for n = 1, 2, ...

By CMVT, for every $x \in (a, b]$, there exists a $b_1 \in (a, x)$ such that

$$\frac{(f(x))^{k+2}}{(k+2)\left(\int_a^x f(s)ds\right)^{k+1}} = \frac{1}{(k+2)} \left(\frac{(f(x))^{\frac{k+2}{k+1}}}{\int_a^x f(s)ds}\right)^{k+1}$$
$$= \frac{1}{(k+2)} \left(\frac{\frac{k+2}{k+1}(f(b_1))^{\frac{1}{k+1}}f'(b_1)}{f(b_1)}\right)^{k+1}$$
$$= \frac{(k+2)^k}{(k+1)^{k+1}} \frac{(f'(b_1))^{k+1}}{(f(b_1)^k}$$
$$= \frac{\left(\left(\frac{k+2}{k+1}\right)^k f'(b_1)\right)^{k+1}}{(k+1)\left(\int_a^{b_1} \left(\frac{k+2}{k+1}\right)^k f'(s)ds\right)^k} \ge 1.$$

Since

$$\frac{d^k}{dx^k} \left[\left(\frac{k+2}{k+1}\right)^k f'(x) \right] = \left(\frac{k+2}{k+1}\right)^k f^{(k+1)}(x)$$
$$\geq \left(\frac{k+2}{k+1}\right)^k \frac{(k+1)!}{(k+2)^k}$$
$$= \frac{k!}{(k+1)^{k-1}}$$

for $x \in (a, b)$, by the induction assumption that (i) is true for n = k. So (i) is true for n = 1, 2, ...

(ii) The proof of the second part is similar so we leave out the details. This completes the proof of the lemma. $\hfill \Box$

Now we are in a position to prove the conjecture (Theorem 2).

Proof of Conjecture (Theorem 2). As in the proof of Lemma 3, we can assume that $\int_a^x f(s)ds > 0$ for any $x \in (a, b]$. (i) Suppose that $f^{(n)}(x) \ge \frac{n!}{2}$ for $x \in (a, b)$ By CMVT and Lemma 3 in case (i) there

(i) Suppose that $f^{(n)}(x) \ge \frac{n!}{(n+1)^{(n-1)}}$ for $x \in (a, b)$. By CMVT and Lemma 3, in case (i), there exists a $b_1 \in (a, x)$ such that

$$\frac{\int_{a}^{b} [f(x)]^{n+2} dx}{\left[\int_{a}^{b} f(x) dx\right]^{n+1}} = \frac{[f(b_{1})]^{n+1}}{(n+1) \left[\int_{a}^{b_{1}} f(x) dx\right]^{n}} \ge 1.$$

This proves (i).

(ii) Suppose that $0 \le f^{(n)}(x) \le \frac{n!}{(n+1)^{(n-1)}}$ for $x \in (a, b)$. By CMVT and Lemma 3, in case (ii), there exists a $b_1 \in (a, x)$ such that

$$\frac{\int_{a}^{b} [f(x)]^{n+2} dx}{\left[\int_{a}^{b} f(x) dx\right]^{n+1}} = \frac{[f(b_{1})]^{n+1}}{(n+1) \left[\int_{a}^{b_{1}} f(x) dx\right]^{n}} \le 1.$$

This completes the proof of the conjecture.

As the proofs show, we actually have the following slightly stronger result which is a generalization of Proposition 1.1 in [2] and Theorem 4 and Theorem 5 in [1].

Theorem 4. Let n belong to \mathbb{Z}^+ . Suppose f(x) has derivative of the n-th order on the interval (a,b) and $f^{(n-1)}(x)$ is continuous on [a,b] such that $f^{(i)}(a) = 0$ for i = 0, 1, 2, ..., n-1.

- (i) If $f^{(n)}(x) \ge \frac{n!}{(n+1)^{(n-1)}}$ for $x \in (a, b)$, then the inequality (1) holds. (ii) If $0 \le f^{(n)}(x) \le \frac{n!}{(n+1)^{(n-1)}}$ for $x \in (a, b)$, then the inequality (1) is reversed.

REFERENCES

- [1] Y. CHEN AND J. KIMBALL, Note on an open problem of Feng Qi, J. Inequal. Pure and Appl. Math., 7(1) (2006), Art. 4. [ONLINE: http://jipam.vu.edu.au/article.php?sid=434].
- [2] F. QI, Several integral inequalities, J. Inequal. Pure and Appl. Math., 1(2) (2000), Art. 19. [ONLINE: http://jipam.vu.edu.au/article.php?sid=113].