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ABSTRACT. In this paper, we introduce the generalized Saitoh operatorLp(a, c, η) and using
this operator, the new subclassesHp,b

n,m(a, c, η), Lp,b
n,m(a, c, η;µ), Hp,b,α

n,m (a, c, η) and
Lp,b,α

n,m (a, c, η;µ) of the class of multivalent functions denoted byAp(n) are defined. Further
for functions belonging to these classes, certain properties of neighborhoods are studied.
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1. I NTRODUCTION

LetAp(n) be the class of normalized functionsf of the form

(1.1) f(z) = zp +
∞∑

k=n+p

akz
k, (n, p ∈ N),

which are analytic andp-valent in the open unit discU = {z ∈ C : |z| < 1}.
Let Tp(n) be the subclass ofAp(n), consisting of functionsf of the form

(1.2) f(z) = zp −
∞∑

k=n+p

akz
k, (ak ≥ 0, n, p ∈ N),

which arep-valent inU .
The Hadamard product of two power series

f(z) = zp +
∞∑

k=n+p

akz
k and g(z) = zp +

∞∑
k=n+p

bkz
k
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is defined as

(f ∗ g)(z) = zp +
∞∑

k=n+p

akbkz
k.

Definition 1.1. For a ∈ R, c ∈ R \ Z−
0 , where Z−

0 = {...,−2,−1, 0} andη ∈ R (η ≥ 0), the
operatorLp(a, c, η) : Ap(n) → Ap(n), is defined as

(1.3) Lp(a, c, η)f(z) = φp(a, c, z) ∗Dηf(z),

where
Dηf(z) = (1− η)f(z) +

η

p
zf ′(z), (η ≥ 0, z ∈ U)

and

φp(a, c, z) = zp +
∞∑

k=n+p

(a)k−p

(c)k−p

zk, z ∈ U

and(x)k denotes the Pochammer symbol given by

(x)k =

{
1 if k = 0,

x(x + 1) · · · (x + k − 1) if k ∈ N = {1, 2, 3, ...}.
In particular, we have,L1(a, c, η) ≡ L(a, c, η).
Further, iff(z) = zp +

∑∞
k=n+p akz

k, then

Lp(a, c, η)f(z) = zp +
∞∑

k=n+p

[
1 +

(
k

p
− 1

)
η

]
(a)k−p

(c)k−p

akz
k.

Remark 1. For η = 0 andn = 1, we obtain the Saitoh operator [7] which yields the Carlson -
Shaffer operator [1] forη = 0 andn = p = 1.

For any functionf ∈ Tp(n) andδ ≥ 0, the(n, δ)-neighborhood off is defined as,

(1.4) Nn,δ(f) =

{
g ∈ Tp(n) : g(z) = zp −

∞∑
k=n+p

bkz
k and

∞∑
k=n+p

k|ak − bk| ≤ δ

}
.

For the functionh(z) = zp, (p ∈ N) we have,

(1.5) Nn,δ(h) =

{
g ∈ Tp(n) : g(z) = zp −

∞∑
k=n+p

bkz
k and

∞∑
k=n+p

k|bk| ≤ δ

}
.

The concept of neighborhoods was first introduced by Goodman [2] and then generalized by
Ruscheweyh [6] .

Definition 1.2. A functionf ∈ Tp(n) is said to be in the classHp,b
n,m(a, c, η) if

(1.6)

∣∣∣∣∣1b
(

z (Lp(a, c, η)f(z))(m+1)

(Lp(a, c, η)f(z))(m)
− (p−m)

)∣∣∣∣∣ < 1,

where p ∈ N, m ∈ N0, a > 0, η ≥ 0, p > m, b ∈ C \ {0} and z ∈ U .

Definition 1.3. A functionf ∈ Tp(n) is said to be in the classLp,b
n,m(a, c, η; µ) if

(1.7)

∣∣∣∣∣1b
[
p(1− µ)

(
Lp(a, c, η)f(z)

z

)(m)

+ µ (Lp(a, c, η)f(z))(m+1) − (p−m)

]∣∣∣∣∣ < p−m,

wherep ∈ N, m ∈ N0, a > 0, η ≥ 0, p > m, µ ≥ 0, b ∈ C \ {0} and z ∈ U .
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2. COEFFICIENT BOUNDS

In this section, we determine the coefficient inequalities for functions to be in the subclasses
Hp,b

n,m(a, c, η) andLp,b
n,m(a, c, η; µ).

Theorem 2.1.Letf ∈ Tp(n). Then,f ∈ Hp,b
n,m(a, c, η) if and only if

(2.1)
∞∑

k=n+p

[
1 +

(
k

p
− 1

)
η

]
(a)k−p

(c)k−p

(
k

m

)
(k + |b| − p) ak ≤ |b|

(
p

m

)
.

Proof. Let f ∈ Hp,b
n,m(a, c, η). Then, by(1.6) and(1.7) we can write,

(2.2) <


∑∞

k=n+p

[
1 +

(
k
p
− 1
)

η
]

(a)k−p

(c)k−p

(
k
m

)
(p− k)akz

k−p(
p
m

)
−
∑∞

k=n+p

[
1 +

(
k
p
− 1
)

η
]

(a)k−p

(c)k−p

(
k
m

)
akzk−p

 > −|b|, (z ∈ U).

Takingz = r, (0 ≤ r < 1) in (2.2), we see that the expression in the denominator on the left
hand side of(2.2), is positive forr = 0 and for allr, 0 ≤ r < 1. Hence, by lettingr 7→ 1−

through real values, expression(2.2) yields the desired assertion(2.1).
Conversely, by applying the hypothesis(2.1) and letting|z| = 1, we obtain,∣∣∣∣∣z (Lp(a, c, η)f(z))(m+1)

(Lp(a, c, η)f(z))(m)
− (p−m)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑∞

k=n+p

[
1 +

(
k
p
− 1
)

η
]

(a)k−p

(c)k−p

(
k
m

)
(p− k)akz

k−m(
p
m

)
zp−m −

∑∞
k=n+p

[
1 +

(
k
p
− 1
)

η
]

(a)k−p

(c)k−p

(
k
m

)
akzk−m

∣∣∣∣∣∣
≤
|b|
[(

p
m

)
−
∑∞

k=n+p

[
1 +

(
k
p
− 1
)

η
]

(a)k−p

(c)k−p

(
k
m

)
ak

]
(

p
m

)
−
∑∞

k=n+p

[
1 +

(
k
p
− 1
)

η
]

(a)k−p

(c)k−p

(
k
m

)
ak

= |b|.

Hence, by the maximum modulus theorem, we havef ∈ Hp,b
n,m(a, c, η). �

On similar lines, we can prove the following theorem.

Theorem 2.2.A functionf ∈ Lp,b
n,m(a, c, η; µ) if and only if

(2.3)
∞∑

k=n+p

[
1 +

(
k

p
− 1

)
η

]
(a)k−p

(c)k−p

(
k − 1

m

)
[µ(k − 1) + 1] ak

≤ (p−m)

[
|b| − 1

m!
+

(
p

m

)]
.

3. I NCLUSION RELATIONSHIPS I NVOLVING (n, δ)-NEIGHBORHOODS

In this section, we prove certain inclusion relationships for functions belonging to the classes
Hp,b

n,m(a, c, η) andLp,b
n,m(a, c, η; µ).

Theorem 3.1. If

(3.1) δ =
(n + p)|b|

(
p
m

)
(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

) , (p > |b|),
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thenHp,b
n,m(a, c, η) ⊂ Nn,δ(h).

Proof. Let f ∈ Hp,b
n,m(a, c, η). By Theorem 2.1, we have,

(n + |b|)
(

1 +
n

p
η

)
(a)n

(c)n

(
n + p

m

) ∞∑
k=n+p

ak ≤ |b|
(

p

m

)
,

which implies

(3.2)
∞∑

k=n+p

ak ≤
|b|
(

p
m

)
(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

) .
Using(2.1) and(3.2), we have,(

1 +
n

p
η

)
(a)n

(c)n

(
n + p

m

) ∞∑
k=n+p

kak

≤ |b|
(

p

m

)
+ (p− |b|)

(
1 +

n

p
η

)
(a)n

(c)n

(
n + p

m

) ∞∑
k=n+p

ak

≤ |b|
(

p

m

)
+ (p− |b|)

(
1 +

n

p
η

)
(a)n

(c)n

(
n + p

m

) |b|
(

p
m

)
(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

)
= |b|

(
p

m

)
n + p

n + |b|
.

That is,
∞∑

k=n+p

kak ≤
|b|(n + p)

(
p
m

)
(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

) = δ, (p > |b|).

Thus, by the definition given by(1.5), f ∈ Nn,δ(h). �

Similarly, we prove the following theorem.

Theorem 3.2. If

(3.3) δ =
(p−m)(n + p)

[
|b|−1
m!

+
(

p
m

)]
[µ(n + p− 1) + 1]

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

) , (µ > 1)

thenLp,b
n,m(a, c, η; µ) ⊂ Nn,δ(h).

4. FURTHER NEIGHBORHOOD PROPERTIES

In this section, we determine the neighborhood properties of functions belonging to the sub-
classesHp,b,α

n,m (a, c, η) andLp,b,α
n,m (a, c, η; µ).

For 0 ≤ α < p and z ∈ U , a function f is said to be in the classHp,b,α
n,m (a, c, η) if there

exists a functiong ∈ Hp,b
n,m(a, c, η) such that

(4.1)

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < p− α.

For 0 ≤ α < p and z ∈ U , a function f is said to be in the classLp,b,α
n,m (a, c, η; µ) if there

exists a functiong ∈ Lp,b
n,m(a, c, η; µ) such that the inequality(4.1) holds true.
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Theorem 4.1. If g ∈ Hp,b
n,m(a, c, η) and

(4.2) α = p−
δ(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

)
(n + p)

[
(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

)
− |b|

(
p
m

)] ,
thenNn,δ(g) ⊂ Hp,b,α

n,m (a, c, η).

Proof. Let f ∈ Nn,δ(g). Then,

(4.3)
∞∑

k=n+p

k|ak − bk| ≤ δ,

which yields the coefficient inequality,

(4.4)
∞∑

k=n+p

|ak − bk| ≤
δ

n + p
, (n ∈ N).

Sinceg ∈ Hp,b
n,m(a, c, η), by (3.2) we have,

(4.5)
∞∑

k=n+p

bk ≤
|b|
(

p
m

)
(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

)
so that, ∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ <
∑∞

k=n+p |ak − bk|
1−

∑∞
k=n+p bk

≤ δ

n + p

(n + |b|)
(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

)[
(n + |b|)

(
1 + n

p
η
)

(a)n

(c)n

(
n+p
m

)
− |b|

(
p
m

)]
= p− α.

Thus, by definition,f ∈ Hp,b,α
n,m (a, c, η) for α given by(4.2). �

On similar lines, we prove the following theorem.

Theorem 4.2. If g ∈ Lp,b
n,m(a, c, η; µ) and

(4.6)

α = p−
δ[µ(n + p− 1) + 1]

(
1 + n

p
η
)

(a)n

(c)n

(
n+p−1

m

)
(n + p)

[
{µ(n + p− 1) + 1}

(
1 + n

p
η
)

(a)n

(c)n

(
n+p−1

m

)
− (p−m)

(
|b|−1
m!

+
(

p
m

))] ,
thenNn,δ(g) ⊂ Lp,b,α

n,m (a, c, η; µ).
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