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Abstract: In this paper, we introduce the generalized Saitoh operdipta,c,n) Close
and using this operator, the new subclas##s), (a,c,n), L5, (a,c,n; 1),
HEE (a,¢,n) and L5 (a, ¢, n; 1) of the class of multivalent functions de- . _ -
noted by.A,(n) are defined. Further for functions belonging to these classes, journal of inequalities
certain properties of neighborhoods are studied. in pure and applied
mathematics
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1. Introduction

Let A, (n) be the class of normalized functiofi®f the form

(1.1) f2)=2"+ > az*,  (n,peN),
k=n+p
which are analytic ang-valent in the open unitdistf = {z € C : |z| < 1}. Generalized Saitoh Operator
Let 7,(n) be the subclass o, (n), consisting of functiong of the form Hesam Mahzoon and S. Latha
oo vol. 10, iss. 4, art. 112, 2009
(12) f(Z) =2" - Z akzka (ak > 07 n,pe N)7
k=n-+tp Title Page

which arep-valent iniA.

Content
The Hadamard product of two power series omens
flz) =2+ Z apz® and g(z) = 22 + Z by 2" p N
k=n+p k=n+p
is defined as N Page 3 of 12
(f*xg)(z) =2"+ Z arbiz®. Go Back
k=n-+p Full Screen
Definition 1.1. Fora € R, ¢ € R\ Z,, whereZ; = {...,—2,—1,0} andn € Close
R (n > 0), the operatorL,(a, c,n) : A,(n) — A,(n), is defined as
. journal of inequalities
(13) Lp(a’ ¢, T’)f(z) - ¢p(av ¢, Z) * Dﬁf(z)v in pure and Gpp"ed
where mathematics
an(z) = (1—77)f(z)+ﬁzf’(z), (n>0, zel) issn: 1443-575k
p
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and
gb(acz-zp—l—z kpk zel

k= n+p
and(z), denotes the Pochammer symbol given by

1 if £ =0,
(:L‘)k—{ c(x+1) - (x+k—-1) fkeN={1,2,3,..}.

In particular, we havel, (a,c,n) = L(a, c,n).
Further, if f(2) = 22 + 32 ax2*, then

Ly(a,c,n)f —z”+z {H(__l)”}((c))kp 2*.

k=n+p

Remarkl. Forn = 0 andn = 1, we obtain the Saitoh operatof][which yields the
Carlson - Shaffer operatord]for n = 0 andn = p = 1.

For any functionf € 7,(n) andd > 0, the (n, 0)-neighborhood off is defined
as,

(1.4) Nous(f)= {967(

Z bkz and Z k]ak—bk]<5}

k=n+p k=n+p

For the functioni(z) = 27, (p € N) we have,

Z b.z" and Z k|bk|<6}

k=n+p k=n+p

(1.5 N,s(h)= {gET(

The concept of neighborhoods was first introduced by Goodn2hand then gen-
eralized by Ruscheweyhg] .
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Definition 1.2. A functionf € 7,(n) is said to be in the clas$(2? (a,c,n) if

L (2 (Lyla e G _m>
b( Larcnfe™ P

wherepe N, meNy, a>0, n>0, p>m, be C\ {0} and z € U.

(1.6) <1,

Definition 1.3. A functionf € 7,(n) is said to be in the clas€?? (a,c,n; u) if

M

(1.7)

a,c 2)\ ™) 1
; [pa - (B EDIEN T gy ) - - m>] ‘

¥4
<p_m7

wherep e N, me Ny, a >0, n>0, p>m, p>0, beC\{0}andz e U.
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2. Coefficient Bounds

In this section, we determine the coefficient inequalities for functions to be in the
subclasse#(2’ (a,c,n) andL?? (a,c,n; p).

Theorem 2.1.Let f € T,(n). Then, f € HEY (a,c,n) if and only if

] B O B L= A

Proof. Let f € HE? (a,c,n). Then, by(1.6) and(1.7) we can write,

R R kT e

(2.2) R - > b, (z€U).
(fl) — k:Zn:-i—p [1 + <§ — 1) 7)} &%(i)akzk—p

Takingz =7, (0 <r < 1)in (2.2), we see that the expression in the denominator
on the left hand side qf2.2), is positive forr = 0 and for allr, 0 < r < 1. Hence,
by lettingr — 1~ through real values, expressigh?) yields the desired assertion

(Zlgbnversely, by applying the hypothesis1) and letting|z| = 1, we obtain,
2 (Ly(a, e, n) f(2)) "™+

(Lp(a, ;) f(2)™
S [+ (5 1) 1] B2 (0 — Dart

(= Ei [1+ (5= 1) 1] = (st

—@—m4
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) = S [+ (5 - 1) o] 2 ()]

(C)kfp
)

(1) = S [+ (5= 1) 0] =2 (8

= [b].

Hence, by the maximum modulus theorem, we hgive H2? (a, ¢, 7).
On similar lines, we can prove the following theorem.

Theorem 2.2. A function f € £2" (a,c,n; 1) if and only if

o0

(2.3) > {1+ (2—1) n] 8—”:;(’“%1) (ke — 1) + 1] ax

k=n+p

oot ()]
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3. Inclusion Relationships Involving (n, §)-Neighborhoods

In this section, we prove certain inclusion relationships for functions belonging to
the classesH?® (a,c,n) andLP? (a,c,n; 1).

1 1M

Theorem 3.1. If
(n+p)Ibl (%)
(n -+ [o]) (14 20) = ()
then H%ﬁn(a, e,n) C Nys(h).
Proof. Let f € HE? (a,c,n). By Theorem2.1, we have,

oo 20) (0 17) 55 = (2)

k=n+p

(3.1) 5=

which implies

(3.2) i 0 < bl () |
e (et Jol) (14 2n) 92 ()

Using(2.1) and(3.2), we have,

Lo (tar) 2

k=n-+p

u(z) o m (o) ) 5 o

k=n+p
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m

< o] (f;) +(p—[bl) (1 + %”) 8: (n;p) (n+ [b]) (11(7;37) (e (i)

That is,
Generalized Saitoh Operator
i kay, < |b|(n + p) (TI:L) _ (5, (p - |b’) Hesam Mahzoon and S. Latha
n (a)n n+p vol. 10, iss. 4, art. 112, 2009
Wt o)) (1 2n) 2 ()
Thus, by the definition given byl .5), f € N,.s(h). O Title Page
Similarly, we prove the following theorem. Contents
Theorem 3.2.If << »
( 71 4—]9 [L;ﬁ—- + } < >
(3.3) 0= (n>1) Page 9 of 12
u(n+p—1) +1< +2) &2 ()
Go Back
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4. Further Neighborhood Properties

In this section, we determine the neighborhood properties of functions belonging to
the subclasse®"(a, ¢, n) andL22(a, ¢, n; ).

For 0 < a < p and z € U, afunction f is said to be in the clasg?’*(a, c, )
if there exists a functioy € H2* (a,c,n) such that

Z
& - ‘ < p— a. Hesam Mahzoon and S. Latha
9(2)
For0 < a < p andz € U, afunction f is said to be in the claség';vf;;f‘(a, c,m; ) if
there exists a functiog € £P® (a,c,n; 1) such that the inequality!.1) holds true.
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Theorem 4.1.1f g € H.) (a, c,n) and Contents
o(n+1ol) (1+20) 22 (27) “« »
(42) a=p— (@) " )
(n+p) [0+ [01) (1 20) &2 (57) = b1 (2)] I
Page 10 of 12
then N, 5(g) € HEL(a, ¢, n). e
Proof. Let f € N, 5(g). Then, Go Back
o Full Screen
(4.3) Z Klay — by <0, Close
k=n+p
which yields the coefficient inequality, journal of inequalifies
in pure and applied
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(4.4) Z lax — by| < n—-l—p’ (n € N). issn: 1443-575k
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Sinceg € HEY (a,c,n), by (3.2) we have,

(o] b P
: (n+ [b]) (1 + 2n) 2= ("7)
k=n+tp p'1) @n \m
so that,
o] . b Generalized Saitoh Operator
'f(Z) -1 < Zk:n+p |ak k| Hesam Mahzoon and S. Latha
9(2) - Zk:nﬂo b vol. 10, iss. 4, art. 112, 2009
5 (n+ 1ol) (14 2n) 42 (")
- n+p [(n+|b|) (1_1_ ) ((;n( ) |b|( )] Title Page
Contents
=p—a.
44 44
Thus, by definition,f € H2%(a, ¢,n) for o given by (4.2). O
4 | 4
On similar lines, we prove the following theorem.
Page 11 of 12
Theorem 4.2.1f g € LP? (a,c,n; ) and
Go Back
1
(4.6) a=p-— Full Screen
(n+p)
a n Cl
lun +p—1)+1] (14 29) Do (m27) -
X , : "
. (a)n (ntp—1 _ [b]—1 p ’ journal of inequalities
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