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Abstract

The main objective of this paper is to obtain explicit estimates on some integral
inequalities on time scale. The obtained inequalities can be used as tools in the
study of certain classes of dynamic equations on time scale.
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1. Introduction
In 1988 Stefan Hilger [4] first introduced in the literature calculus on time
scales, which unifies continuous and discrete analysis. Motivated by the above
paper [4], many authors have extended some fundamental inequalities used in
analysis on time scales, see [1] – [3], [5], [9], [10]. In [3], [4], [9], [10] the
authors have extended some fundamental integral inequalities used in the the-
ory of differential and integral equations on time scales. The main purpose
of this paper is to obtain time scale versions of some more fundamental inte-
gral inequalities used in the theory of differential and integral equations. The
obtained inequalities can be used as tools in the study of certain properties of
dynamic equations on time scales. Some applications are also given to illustrate
the usefulness of some of our results.
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2. Preliminaries
Let T be a time scale andσ andρ be two jump operators asσ, ρ : T → R
satisfying

σ(t) = inf{s ∈ T|s > t} and ρ(t) = sup{s ∈ T|s < t}.

A function f : T → R is said to be rd-continuous if it is continuous at each
right dense point and if the left sided limit exists at every left dense point. The
set of all rd-continuous functions is denoted byCrd[T, R]. Let

Tk :=

{
T−m if T has left scattered point in M

T otherwise

Let f : T → R andt ∈ Tk then we definef∆(t) as: forε > 0 there exists a
neighbourhoodN of t with∣∣f (σ (t))− f (s)− f∆ (t) (σ (t)− s)

∣∣ ≤ ε |σ (t)− s|

for all s ∈ N andf is called delta-differentiable onT. A functionF : T → R is
called an antiderivative off : T → R providedF∆ = f (t) holds for allt ∈ Tk.
In this case we define the integral off by∫ t

s

f (τ) ∆τ = F (t)− F (s) wheres, t ∈ T.

We need the following two lemmas proved in [3].
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Lemma 2.1. Letu, g ∈ Crd(T, R) andf ∈ R+. If

(2.1) u∆ (t) ≤ f (t) u (t) + g (t)

for all t ∈ Tk, then

(2.2) u (t) ≤ u (a) ef (t, a) +

∫ t

a

ef (t, σ (s)) g (t) ∆s,

for all t ∈ Tk, whereef (t, a) is a solution of the initial value problem (IVP)

(2.3) u∆ (t) = f (t) u (t) , u (a) = 1

Lemma 2.2. Let u, f, g, p ∈ Crd(T, R) and assumeg, p ≥ 0 andf is nonde-
creasing onT

(2.4) u (t) ≤ f (t) + p (t)

∫ t

a

g (τ)u (τ) ∆τ,

for all t ∈ Tk then

(2.5) u (t) ≤ f (t)

[
1 + p (t)

∫ t

a

g (τ) egp (t, σ (τ)) ∆τ

]
for all t ∈ Tk whereegp (t, ·) is a solution of IVP (2.3) whenf is replaced by
gp.
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3. Statement of Results
Our main results are given in the following theorems.

Theorem 3.1. Letu, n, f ∈ Crd(T, R+) andn be a nondecreasing function on
T. If

(3.1) u (t) ≤ n (t) +

∫ t

a

f (s)u (s) ∆s

for all t ∈ Tk, then

(3.2) u (t) ≤ n (t) ef (t, a)

for all t ∈ Tk, whereef (t, a) is the solution of the initial value problem (2.2).

Remark 1. We note that Theorem3.1 is a further extension of the inequality
first given by Bellman see [6, p. 12]. In the special case ifn(t) is a constant say
u0, then the bound obtained in (3.2) reduces to the bound obtained in Corollary
2.10 given by Bohner, Bohner and Akin in [3].

We next establish the following generalization of the inequality given in
Corollary 2.10 of [3] which may be useful in certain new applications.

Theorem 3.2.Letu, f, p, q ∈ Crd(T, R+) andc ≥ 0 be a constant. If

(3.3) u (t) ≤ c +

∫ t

a

f (s) [p (s) u (s) + q (s)] ∆s,
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for all t ∈ Tk, then

(3.4) u (t) ≤
[
c +

∫ t

a

f (s)q (s) ∆s

]
epf (t, a) ,

for all t ∈ Tk, whereepf (t, a) is the solution of IVP (2.3) whenf(t) is replaced
bypf .

Remark 2. By takingq = 0 in Theorem3.2, it is easy to observe that the bound
obtained in (3.4) reduces to the bound obtained in Corrollary 2.10 given in [3].

The next theorem deals with the time scale version of the inequality due to
Sansone and Conti, see [6, p. 86].

Theorem 3.3. Letu, f, p ∈ Crd(T, R+) andf be delta-differentiable onT and
f∆ (t) ≥ 0. If

(3.5) u (t) ≤ f (t) +

∫ t

a

p (s) u (s) ∆s

for all t ∈ Tk, then

(3.6) u (t) ≤ f (a) ep (t, a) +

∫ t

a

f∆ (s)ep (t, σ (s)) ∆s

for all t ∈ Tk, whereep (t, a) is a solution of the IVP (2.3) whenf is replaced
byp.

The following theorem combines both Gronwall and Bihari’s inequalities
and can be used in more general situations.
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Theorem 3.4. Let u, g, f, h ∈ Crd(T, R+), u0 ≥ 0 is a constant. LetW (u) be
a continous, non-decreasing and submultiplicative function defined onR+ and
W (u) > 0 for u > 0. If

(3.7) u (t) ≤ u0 + g (t)

∫ t

a

f (s) u (s) ∆s +

∫ t

a

h (s) W (u (s)) ∆s,

for all t ∈ Tk, then

(3.8) u (t) ≤ a (t) G−1

[
G (u0) +

∫ t

a

h (s) W (a (s)) ∆s

]
,

for t ∈ Tk, where

(3.9) a (t) = 1 + g (t)

∫ t

a

f (s)efg (t, σ (s)) ∆s,

for t ∈ Tk andG is a solution of

(3.10) G∆ (u (t)) =
u∆ (t)

W (u (t))
,

G−1 is the inverse function ofG and G (u0) +
∫ t

a
h (s) W (a (s))∆s is in the

domain ofG−1 for t ∈ Tk.

The following theorem deals with a time scale version of the inequality re-
cently established by Pachpatte in [8].
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Theorem 3.5. Let u, f ∈ Crd(T, R+) and h(t, s) : T × T → R+ for 0 ≤
s ≤ t < ∞ and c ≥ 0, p > 1 are real constants. Letg(u) be a continuous
nondecreasing function ofR+ andg(u) > 0 for u > 0. If

(3.11) up (t) ≤ c +

∫ t

a

[
f (s) g (u (s)) +

∫ s

a

h (s, τ) g (u (τ)) ∆τ

]
∆s,

for t ∈ Tk, then

(3.12) u (t) ≤
[
G−1 [G (c) + A (t)]

] 1
p ,

where

(3.13) A (t) =

∫ t

a

[
f (s) +

∫ s

a

h (s, τ) ∆τ

]
∆s,

for t ∈ Tk, G is a solution of

(3.14) G∆ (u (t)) =
u∆ (t)

g (u (t))
1
p

,

andG−1 is the inverse function onG with G(c)+A(t) in the domain ofG−1 for
t ∈ Tk.
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4. Proofs of Theorems3.1– 3.3
Let ε > 0 be a small constant. From (3.1) we observe that

(4.1) u (t) ≤ (n (t) + ε) +

∫ t

a

f (s) u (s)∆s.

Define a functionz(t) by

z (t) =
u (t)

n (t) + ε
.

From (4.1) we have

z (t) ≤ 1 +

∫ t

a

(
f (s)

u (s)

n (t) + ε

)
∆s

≤ 1 +

∫ t

a

f (s)
1

n (s) + ε
u (s) ∆s

i.e

(4.2) z (t) ≤ 1 +

∫ t

a

f (s)z (s) ∆s.

Definem (t) = 1 +
∫ t

a
f (s)z (s) ∆s, thenm(a) = 1, z(t) ≤ m(t) and

m∆ (t) = f (t) z (t)(4.3)

≤ f (t) m (t) .
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Now a suitable application of Lemma2.1to (4.3) yields

(4.4) m (t) ≤ ef (t, a) .

Using the fact thatz(t) ≤ m(t) we get

u (t)

n (t) + ε
≤ ef (t, a) ,

(4.5) i.e u (t) ≤ (n (t) + ε) ef (t, a) .

Letting ε → 0 in (4.5), we get the required inequality in (3.2).
In order to prove Theorem3.2, we rewrite (3.3) as

(4.6) u (t) ≤
[
c +

∫ t

a

f (s) q (s) ∆s

]
+

∫ t

a

f (s)p (s) u (s) ∆s.

Definen (t) = c +
∫ t

a
f (s)q (s) ∆s, then (4.6) can be restated as

(4.7) u (t) ≤ n (t) +

∫ t

a

f (s)p (s) u (s) ∆s.

Clearlyn ∈ Crd (T, R+), n(t) is nonnegative and nondecreasing . Now an ap-
plication of Theorem3.1yields the required inequality in (3.4). This completes
the proof of Theorem3.2.

In order to prove Theorem3.3, define a functionz(t) by

(4.8) z (t) = f (t) +

∫ t

a

p (s)u (s) ∆s,

http://jipam.vu.edu.au/
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thenz(a) = f(a), u(t) ≤ z(t) for t ∈ Tk and

z∆ (t) = f∆ (t) + p (t) u (t)(4.9)

≤ f∆ (t) + p (t) z (t) .(4.10)

Now a suitable application of Lemma2.1to (4.8) yields

(4.11) z (t) ≤ z (a) ep (t, a) +

∫ t

a

ep (t, σ (s))f∆ (s) ∆s

for t ∈ Tk. Using (4.11) in u(t) ≤ z(t) we get the desired inequality in (3.6).
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5. Proofs of Theorems3.4and 3.5
To prove Theorem3.4, we define

(5.1) n (t) = u0 +

∫ t

a

h (s)W (u (s)) ∆s.

Then (3.7) can be restated as

(5.2) u (t) ≤ n (t) + g (t)

∫ t

a

f (s)u (s) ∆s.

Clearly n(t) is a nondecreasing function onT. Applying Lemma2.2 to (5.2)
we have

(5.3) u (t) ≤ a (t) n (t) ,

for t ∈ Tk, wherea(t) is given by (3.9). From (5.1), (5.3) and using the as-
sumptions onW , we have

n∆ (t) = h (t) W (u (t))(5.4)

≤ h (t) W (a (t) n (t))

≤ h (t) W (a (t) W (n (t))) .

From (3.10) and (5.4) we have

(5.5) G∆ (n (t)) =
n∆ (t)

W (n (t))
≤ h (t) W (a (t)) .

http://jipam.vu.edu.au/
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Integrating (5.5) from a to t ∈ Tk we obtain

(5.6) G (n (t))−G (u0) ≤
∫ t

a

h (t)W (a (t)) ∆s,

from (5.6) we observe that

(5.7) n (t) ≤ G−1

[
G (u0) +

∫ t

a

h (t)W (a (t)) ∆s

]
.

Using (5.7) in (5.3) we get the desired inequality in (3.8).
In order to prove Theorem3.5, we first assume thatc > 0 and define a

function z(t) by the right side of (3.11) . Thenz(t) > 0, z(a) = c, u (t) ≤
(z(t))

1
p and

z∆ (t) = f (t) g (u (t)) +

∫ t

a

h (t, τ)g (u (τ)) ∆τ(5.8)

≤ f (t) g
(
(z (t))

1
p

)
+

∫ t

a

h (t, τ) g
(
(z (t))

1
p

)
∆τ

≤ g
(
(z (t))

1
p

) [
f (t) +

∫ t

a

h (t, τ) ∆τ

]
.

From (3.14) and (5.8) we have

G∆ (z (t)) =
z∆ (t)

g
(
(z (t))

1
p

)
≤

[
f (t) +

∫ t

a

h (t, τ) ∆τ

]
.(5.9)
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Integrating (5.9) from a to t ∈ Tk we have

(5.10) G (z (t)) ≤ G (c) + A (t) .

From (5.10) we get

(5.11) z (t) ≤ G−1 [G (c) + A (t)] .

Using (5.11) in u (t) ≤
(
(z (t))

1
p

)
we have the desired inequality in (3.12). If c

is nonnegative we carry out the above procedure withc + ε instead ofc, where
ε > 0 is an arbitrary small constant and by lettingε → 0 we obtain (3.12).
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6. Applications
In this section we present some applications of Theorems3.3and3.5 to obtain
the explicit estimates on the solutions of certain dynamic equations.

First we consider the following intial value problem

(6.1) x∆∆(t) = f (t, x (t)) , x (a) = A, x∆ (a) = B,

wheref ∈ Crd (T× R, R) andA, B are given constants.
The following result gives the bound on the solution of IVP (6.1).

Theorem 6.1.Suppose that the functionf satisfies

(6.2) |(t− s) f (s, x (s))| ≤ p (s) |x (s)| ,

wherep ∈ Crd

(
Tk, R+

)
, and assume that

(6.3) |A + B (t− a)| ≤ m (t) ,

m ∈ Crd (T, R+), m is delta differentiable onTk andm∆ (t) ≥ 0. Then

(6.4) |x (t)| ≤ m (a) ep (t, a) +

∫ t

a

m∆ (s)ep (t, σ (s)) ∆s,

for t ∈ Tk, whereep (t, a) is as in Theorem3.3.

Proof. Let x(t) be a solution of the IVP (6.1). Then it is easy to see thatx(t)
satisfies the equivalent integral equation

(6.5) x (t) = A + B(t− a) +

∫ t

a

(t− s)f (s, x (s)) ∆s.
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From (6.5) and using (6.2), (6.3), we have

|x (t)| ≤ |A + B(t− a)|+
∫ t

a

|(t− s) f (s, a (s))|∆s(6.6)

≤ m (t) +

∫ t

a

g (t) p (s) |x (s)|∆s.

Now applying Theorem3.3to (6.6) we get

|x (t)| ≤ m (a) ep (t, a) +

∫ t

a

m∆ (s)ep (t, σ (s)) ∆s.

This is the required estimate in (6.4).

Next we consider the following intial value problem

(6.7) (r (t) xp (t))∆ = f (t, x (t)) , x(a) = c,

wherer(t) > 0 is rd-continous fort ∈ Tk, f ∈ Crd(T× R, R) andc, p > 1 are
constants.

As an application of the special version of Theorem3.5we have the follow-
ing.

Theorem 6.2.Suppose that the functionf satisfies

(6.8) |f (t, x (t))| ≤ q (t) g (|x (t)|) ,

whereq ∈ Crd (T, R+) andg is as in Theorem3.5and assume that

(6.9)

∣∣∣∣ 1

r (t)

∣∣∣∣ ≤ d,
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whered ≥ 0 is a constant. Then

(6.10) |x (t)| ≤
[
G−1

[
G (|r (a) c| d) +

∫ t

a

q (s) ∆s

]] 1
p

,

whereG, G−1 are as in Theorem3.5.

Proof. Let x(t) be a solution of IVP (6.7). It is easy to see thatx(t) satisfies the
equivalent integral equation

(6.11) xp (t) =
r (a)

r (t)
c +

1

r (t)

∫ t

a

f (s, x (s))∆s.

From (6.11) and using (6.8), (6.9) we get

(6.12) |x (t)|p ≤ |r (a) c| d +

∫ t

a

dq (s)g (|x (s)|) ∆s.

Now by applying Theorem3.5 whenh = 0 to (6.12) we get the required esti-
mates in (6.10)
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