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Abstract

Elsewhere we developed rules for the monotonicity pattern of the ratio r := f/g
of two differentiable functions on an interval (a, b) based on the monotonicity
pattern of the ratio ρ := f ′/g′ of the derivatives. Those rules are applicable
even more broadly than l’Hospital’s rules for limits, since in general we do not
require that both f and g, or either of them, tend to 0 or ∞ at an endpoint
or any other point of (a, b). Here new insight into the nature of the rules for
monotonicity is provided by a key lemma, which implies that, if ρ is monotonic,
then ρ̃ := r′ · g2/|g′| is so; hence, r′ changes sign at most once. Based on
the key lemma, a number of new rules are given. One of them is as follows:
Suppose that f(a+) = g(a+) = 0; suppose also that ρ ↗↘ on (a, b) – that is,
for some c ∈ (a, b), ρ ↗ (ρ is increasing) on (a, c) and ρ ↘ on (c, b). Then r ↗
or ↗↘ on (a, b). Various applications and illustrations are given.

2000 Mathematics Subject Classification: 26A48, 26A51, 26A82, 26D10, 50C10,
53A35.
Key words: L’Hospital-type rules, Monotonicity, Borwein-Borwein-Rooin ratio,

Becker-Stark inequalities, Anderson-Vamanamurthy-Vuorinen inequali-
ties, log-concavity, Maclaurin series, Hyperbolic geometry, Right-angled
triangles.
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1. Introduction
Let−∞ ≤ a < b ≤ ∞. Let f andg be differentiable functions defined on the
interval(a, b), and let

r :=
f

g
.

It is assumed throughout (unless specified otherwise) thatg andg′ do not take
on the zero value and do not change their respective signs on(a, b). In [16],
general “rules" for monotonicity patterns, resembling the usual l’Hospital rules
for limits, were given. In particular, according to [16, Proposition 1.9], one has
the dependence of the monotonicity pattern ofr (on (a, b)) on that of

ρ :=
f ′

g′

(and also on the sign ofgg′) as given by Table1. The vertical double line in the
table separates the conditions (on the left) from the corresponding conclusions
(on the right).

Here, for instance,r ↘↗ means that there is somec ∈ (a, b) such that
r ↘ (that is,r is decreasing) on(a, c) andr ↗ on (c, b). Now suppose that
one also knows whetherr ↗ or r ↘ in a right neighborhood ofa and in a left
neighborhood ofb; then Table1 uniquely determines the monotonicity pattern
of r.

Clearly, the stated l’Hospital-type rules for monotonicity patterns are helpful
wherever the l’Hospital rules for limits are so, and even beyond that, because
these monotonicity rules do not require that bothf andg (or either of them)
tend to 0 or∞ at any point.

http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edum
http://jipam.vu.edu.au/


On L’Hospital-Type Rules for
Monotonicity

Iosif Pinelis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 42

J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006

http://jipam.vu.edu.au

ρ gg′ r

↗ > 0 ↗ or↘ or↘↗
↘ > 0 ↗ or↘ or↗↘
↗ < 0 ↗ or↘ or↗↘
↘ < 0 ↗ or↘ or↘↗

Table 1: Basic general rules for monotonicity.

The proof of these rules is very easy if one additionally assumes that the
derivativesf ′ andg′ are continuous andr′ has only finitely many roots in(a, b)
(which will be the case if, for instance,r is not a constant whilef andg are
real-analytic functions on[a, b]). Such an easy proof [21, Section 1] is based on
the identity

(1.1) g2 r′ = (ρ− r) g g′,

which is easy to check. A proof without using the additional conditions (that
the derivativesf ′ andg′ are continuous andr′ has only finitely many roots) was
given in [16].

Based on Table1, one can generally infer the monotonicity pattern ofr given
that ofρ, however complicated the latter is. In particular, one has the rules given
by Table2.

Each monotonicity pattern ofr in Tables1 and2 does actually occur; see
Remark10 for details.

http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edum
http://jipam.vu.edu.au/


On L’Hospital-Type Rules for
Monotonicity

Iosif Pinelis

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 42

J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006

http://jipam.vu.edu.au

ρ gg′ r

↗↘ > 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘
↘↗ > 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↗↘ < 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↘↗ < 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘

Table 2: Derived general rules for monotonicity.

In the special case when bothf andg vanish at an endpoint of the inter-
val (a, b), l’Hospital-type rules for monotonicity and their applications can be
found, in different forms and with different proofs, in [11, 12, 13, 10, 2, 3, 1, 4,
5, 15, 16, 17, 18].

Thespecial-caserule can be stated as follows: Suppose thatf(a+) = g(a+)
= 0 or f(b−) = g(b−) = 0; suppose also thatρ is increasing or decreasing on
the entire interval(a, b); then, respectively,r is increasing or decreasing on
(a, b). When the conditionf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0 does
hold, the special-case rule may be more convenient, because then one does not
have to investigate the monotonicity pattern of ratior near the endpoints of the
interval(a, b).

A unified treatment of the monotonicity rules, applicable whether or notf
andg vanish at an endpoint of(a, b), can be found in [16].

L’Hospital’s rule for limits when the denominator tends to∞ does not have
a “special-case" analogue for monotonicity; see e.g. [21, Section 1] for details.

In view of what has been said here, it should not be surprising that a very
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wide variety of applications of these l’Hospital-type rules for monotonicity
patterns were given: in areas of analytic inequalities [5, 15, 16, 19], approx-
imation theory [17], differential geometry [10, 11, 12, 21], information the-
ory [15, 16], (quasi)conformal mappings [1, 2, 3, 4], statistics and probability
[13, 16, 17, 18], etc.

Clearly, the stated rules for monotonicity could be helpful whenf ′ or g′ can
be expressed simpler thanf or g, respectively. Such functionsf and g are
essentially the same as the functions that could be taken to play the role ofu in
the integration-by-parts formula

∫
u dv = uv −

∫
v du; this class of functions

includes polynomial, logarithmic, inverse trigonometric and inverse hyperbolic
functions, and as well as non-elementary “anti-derivative” functions of the form
x 7→ c+

∫ x

a
h(u) du or x 7→ c+

∫ b

x
h(u) du.

“Discrete" analogues, forf andg defined onZ, of the l’Hospital-type rules
for monotonicity are available as well [20].

Let us conclude this Introduction by a brief description of the contents of the
paper.

Section2 contains what is referred to in this paper as the key lemma (Lemma
2.1). This lemma provides new insight into the nature of the l’Hospital-type
rules for monotonicity, as well as a basis for further developments. The key
lemma states that the monotonicity pattern of functionρ̃ := r′ · g2/|g′| is the
same as that ofρ if gg′ > 0, and opposite to the pattern ofρ if gg′ < 0. Clearly,
from this lemma, such rules as the ones given by Table1 are easily deduced,
sincesign(r′) = sign ρ̃. We present two proofs of the key lemma: one proof is
short and self-contained, even if somewhat cryptic; the other proof is longer but
apparently more intuitive.

In Section3, certain shortcuts are given for the monotonicity rules based on
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the key lemma. As stated above, Table1 uniquely determines the monotonicity
pattern (↗ or ↘) of r on (a, b) provided that one knows (i) the monotonicity
pattern ofρ on (a, b), (ii) the sign ofgg′ on (a, b), and also (iii) whetherr ↗ or
r ↘ in a right neighborhood ofa and in a left neighborhood ofb. In Section3,
it is noted (Corollary3.2) that, instead of these assumptions (i)–(iii), it suffices
to know simply the signs of the limits̃ρ(a+) andρ̃(b−) in order to determine
uniquely the monotonicity pattern ofr on (a, b) – provided thatρ is monotonic
on (a, b). However, if the sign ofgg′ on (a, b) is taken into account as well as
whetherρ is increasing or decreasing on(a, b), then (Corollary3.3) one needs
to determine the sign of only one of the limitsρ̃(a+) andρ̃(b−).

In Section4, the stated special-case rule for monotonicity (withf andg both
vanishing at an endpoint of the interval(a, b)) is extended (Propositions4.3and
4.4) to include the cases whenρ is not monotonic on(a, b) but rather has one of
the patterns↗↘ or↘↗. Moreover, it can be allowed that bothf andg vanish
at an interior point, rather than at an endpoint, of the interval (Proposition4.5).
These developments are based on the key lemma, as well.

In Section5, a general discussion concerning the interplay between the func-
tionsr, ρ, andρ̃ is presented as viewed from different angles.

Finally, in Section6, a number of applications and illustrations of the rules
for monotonicity are given.
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2. Key Lemma
Lemma 2.1 (Key lemma).The monotonicity pattern (↗ or↘) of the function

(2.1) ρ̃ := g2 r′

|g′|

on (a, b) is determined by the monotonicity pattern ofρ and the sign ofgg′,
according to Table3.

ρ gg′ ρ̃

↗ > 0 ↗
↘ > 0 ↘
↗ < 0 ↘
↘ < 0 ↗

Table 3: The monotonicity pattern of̃ρ is the same as
that of ρ if gg′ > 0, and opposite to the pattern ofρ if
gg′ < 0.

Proof of Lemma2.1. Let us verify the first line of Table3. So, it is assumed that
ρ ↗ andgg′ > 0. This verification follows very closely the lines of the proof
of [16, Proposition 1.2].

Fix anyx andy such that

a < x < y < b
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and consider the functionh defined by the formula

h(u) := hy(u) := f ′(y) g(u)− g′(y) f(u).

For allu ∈ (a, y), one has

h′(u) = f ′(y) g′(u)− g′(y) f ′(u) = g′(y) g′(u) (ρ(y)− ρ(u)) > 0,

becauseg′ is nonzero and does not change sign on(a, b) andρ ↗ on (a, b).
Hence,h↗ on (a, y); moreover, being continuous,h is increasing on(a, y].

Next, one has a key identity

(ρ̃(y)− ρ̃(x)) |g′(y)| =
(
h(y)− h(x)

)
+

(
ρ(y)− ρ(x)

)
g(x) g′(y);

here it is taken into account thatg′ is nonzero and does not change sign on
(a, b), so that|g′(y)|/|g′(x)| = g′(y)/g′(x). The first summand,h(y) − h(x),
on the right-hand side of this identity is positive — becauseh ↗ on (a, y];
the second summand,[ρ(y)− ρ(x)] g(x) g′(y) is also positive — becauseρ ↗
on (a, b) while gg′ > 0 on (a, b) andg′ does not change sign on(a, b). Thus,
ρ̃(y) > ρ̃(x).

This verifies the first line of Table3. Its second line can be deduced from the
first one by the “vertical reflection”; that is, by replacingf by −f (and hence
r by −r, while keepingg the same). The third line can be deduced from the
second one by the “horizontal reflection”; that is, by “changing the variable”
from x to−x. Finally, the fourth line can be deduced from the third one by the
“vertical reflection”.
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While the above proof is short and self-contained, it may seem somewhat
cryptic. Let us give another version of the proof, which is longer but perhaps
more illuminating (especially its Step 1). The latter proof makes use of the
following technical lemma.

Lemma 2.2. Leth be any real functionh on (a, b) such that for allx ∈ (a, b)

h(x) ≥ h(x−) and (D+h)(x) ≥ 0,(2.2)

where (D+h)(x) := lim inf
∆x↓0

∆h

∆x
(2.3)

is the lower right Dini derivative (possibly infinite) of the functionh at pointx,
and

∆h := (∆h)(x; ∆x) := h(x+ ∆x)− h(x).

Thenh is nondecreasing on(a, b).

Proof. This statement is essentially well known, at least when the functionh is
continuous; cf., e.g., [22, Example 11.3 (IV)]. The following proof is provided
for the readers’ convenience. For anyx ∈ (a, b) and anyε > 0, consider the set

E := Ex,ε := {y ∈ [x, b) : h(u) ≥ h(x)− ε · (u− x) ∀u ∈ [x, y)}.

ThenE 6= ∅, sincex ∈ E. Therefore, there existsc := cx,ε := supE, and
c ∈ [x, b] ⊆ [x,∞]. It suffices to show thatc = b for everyε > 0; indeed, then
one will haveh(u) ≥ h(x)− ε · (u− x) for all u ∈ [x, b) and allε > 0, whence
h(u) ≥ h(x) for all x ∈ (a, b) andu ∈ [x, b).

To obtain a contradiction, assume thatc 6= b for someε > 0. Then it is easy
to see thatc ∈ E, and so,h(u) ≥ h(x)− ε · (u− x) for all u ∈ [x, c) and hence
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for u = c (sinceh(c) ≥ h(c−)). Thus,h(c) ≥ h(x)− ε · (c− x). On the other
hand, the conditionc 6= b implies that(D+h)(c) ≥ 0, and so, there exists some
d ∈ (c, b) such thath(u) ≥ h(c) − ε · (u − c) for all u ∈ [c, d). It follows that
h(u) ≥ h(x)− ε · (u− x) for all u ∈ [c, d) and hence for allu ∈ [x, d). That is,
d ∈ E while d > c, which contradicts the conditionc = supE.

The other proof of Lemma2.1. Again, it suffices to verify the first line of Ta-
ble 3, so that it is assumed thatρ ↗ andgg′ > 0 on (a, b). Note first that

(2.4) ρ̃ = (ρ g − f) sign(g′).

Recall thatsign(g′) is constant on(a, b). The proof will be done in two steps.
Step 1: Here the first line of Table3 will be verified under the additional con-
dition thatρ is differentiable on(a, b). Then (2.4) implies

ρ̃′ = ρ′ · g · sign(g′), whence(2.5)

sign(ρ̃′) = sign(ρ′).(2.6)

Sinceρ↗, one hasρ′ ≥ 0 and hence, by (2.6), ρ̃′ ≥ 0, so thatρ̃ is nondecreas-
ing (on(a, b)). To obtain a contradiction, suppose now that the conditionρ̃ ↗
fails (that is,ρ̃ is notstrictly increasing on(a, b)). Thenρ̃ must be constant and
henceρ̃′ = 0 on some non-empty interval(c, d) ⊂ (a, b). It follows by (2.6)
thatρ′ = 0 on (c, d), which contradicts the conditionρ↗.
Step 2: Here the first line of Table3 will be verified without the additional
condition. In view of (2.4), one has the obvious identity

(2.7) ∆ρ̃ =
(
(∆ρ) · (g + ∆g) + ρ ·∆g −∆f

)
· sign(g′).
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Dividing both sides of this identity by∆x and letting∆x ↓ 0, one has (cf. (2.5))

D+ρ̃ = (D+ρ) · g · sign(g′) ≥ 0,

because (i) the functiong is differentiable and hence continuous; (ii)gg′ > 0;
(iii) ρ g′ = f ′; and (iv)ρ↗ and henceD+ρ ≥ 0. It also follows from (2.7) that
for all x ∈ (a, b)

ρ̃(x−)− ρ̃(x) = lim
∆x↑0

∆ρ̃(x; ∆x)

= lim
∆x↑0

∆ρ(x; ∆x) · g(x) · sign(g′(x)) ≤ 0,

sinceρ ↗ andgg′ > 0. Hence,ρ̃(x) ≥ ρ̃(x−) for all x ∈ (a, b). Thus, by
Lemma2.2, ρ̃ is nondecreasing on(a, b).

Therefore, if the conditioñρ↗ fails, thenρ̃ is constant on some non-empty
interval(c, d) ⊂ (a, b). It follows by (2.4) thatρ g − f = K on (c, d) for some
constantK, whenceρ = (f +K)/g is differentiable on(c, d). Thus, according
to Step 1,̃ρ↗ on (c, d), which is a contradiction.
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3. Refined General Rules for Monotonicity
As before, the term “general rules for monotonicity” refers to the rules valid
without the special condition that bothf and g vanish at an endpoint of the
interval(a, b).

From the key lemma (Lemma2.1), the general l’Hospital-type rules for
monotonicity given by Table1 easily follow.

Corollary 3.1. The rules given by Table1 are true.

Proof. Indeed, consider the first line of Table1. Thus, it is assumed thatρ ↗
andgg′ > 0 on (a, b). Then, by the first line of Table3, ρ̃ ↗ on (a, b). There-
fore, ρ̃(x) may change sign only from− to + asx increases froma to b. In
view of (2.1), the same holds withr′ instead ofρ̃. More formally, there exists
somec ∈ [a, b] such thatr′ < 0 on (a, c) andr′ > 0 on (c, b). Thus, eitherr ↗
on (a, b) (whenc = a) or r ↘ on (a, b) (whenc = b) or r ↘↗ on (a, b) (when
c ∈ (a, b)). This verifies the first line of Table1. The other three lines of Table1
can be verified similarly; alternatively, they can be deduced from the first line
(cf. the end of the first proof of Lemma2.1).

As was stated in the Introduction, if one also knows whetherr ↗ or r ↘ in
a right neighborhood ofa and in a left neighborhood ofb, then Table1 uniquely
determines the monotonicity pattern ofr. Sometimes it is very easy to deter-
mine the monotonicity patterns ofr near an endpoint,a or b. For example, if
r(b−) = ∞, then it follows immediately thatr ↗ in a left neighborhood of
b (given the knowledge thatr ↗ or ↘ or ↘↗ or ↗↘ on (a, b)). Or, if it is
known thatr(a+) = 0 while r > 0 on (a, b), then it follows immediately that
r ↗ in a right neighborhood ofa.
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However, in some other cases it may be not so easy to determine the mono-
tonicity patterns ofr neara or b, especially when the functionsf andg depend
on a number of parameters. In such situations, any additional shortcuts may
prove useful. With this in mind, let us present the following corollaries to the
key lemma.

Corollary 3.2. If ρ↗ or ↘ on (a, b), then the limits̃ρ(a+) and ρ̃(b−) always
exist in[−∞,∞], and ρ̃(a+) 6= ρ̃(b−). At that, the rules given by Table4 are
true.

ρ̃(a+) ρ̃(b−) r

≥ 0 ≥ 0 ↗
> 0 < 0 ↗↘
< 0 > 0 ↘↗
≤ 0 ≤ 0 ↘

Table 4: Ifρ↗ or↘, then the signs of̃ρ(a+) andρ̃(b−) determine the pattern
of r on (a, b).

Corollary 3.3. The rules given by Table5 are true.

The message conveyed by Corollary3.2 is the following. If ρ ↗ or ↘ on
(a, b), then the monotonicity patterns ofr near the endpointsa andb (and hence
on the entire interval(a, b)) are completely determined by the signs of the limits
ρ̃(a+) and ρ̃(b−). (In particular, at that the sign ofgg′ is no longer relevant.
Note also that the four cases in Table4 concerning the signs of̃ρ(a+) andρ̃(b−)
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ρ gg′ ρ̃(a+) ρ̃(b−) r′ r

↗ > 0 ≥ 0 > 0 ↗
↗ > 0 ≤ 0 < 0 ↘
↘ > 0 ≥ 0 > 0 ↗
↘ > 0 ≤ 0 < 0 ↘
↘ < 0 ≥ 0 > 0 ↗
↘ < 0 ≤ 0 < 0 ↘
↗ < 0 ≥ 0 > 0 ↗
↗ < 0 ≤ 0 < 0 ↘

Table 5: The content of the blank cells is not needed, and easy to restore.

are exhaustive. Moreover, the four cases are pairwise mutually exclusive —
becausẽρ(a+) 6= ρ̃(b−) and hencẽρ(a+) andρ̃(b−) cannot be simultaneously
zero.)

On the other hand, by Corollary3.3, if the sign of gg′ is taken into ac-
count, then — in8 of the24 = 16 possible cases concerning the signs ofD+ρ,
gg′, ρ̃(a+), and ρ̃(b−) — one needs to determine only one of the two signs,
sign ρ̃(a+) or sign ρ̃(b−), depending on the case.

Note that lines 1, 4, 6, and 7 of Table5 correspond to parts (1), (2), (3), and
(4) of [16, Corollary 1.3], where limits superior or inferior tõρ(x) asx ↓ a or
x ↑ b are used in place of the limits̃ρ(a+) and ρ̃(b−) (which latter we now
know always exist, by Corollary3.2, provided thatρ↗ or↘ on (a, b)).
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Proof of Corollary3.2. If ρ ↗ or↘ then, by Table3, ρ̃ is (strictly) monotonic
(on (a, b)). Hence, the limits̃ρ(a+) andρ̃(b−) exist and differ from each other.
Now the rules of Table4 immediately follow by Lemma2.1 (cf. the proof of
Corollary3.1).

Proof of Corollary3.3. It suffices to consider only the first line of Table5, so
that it is assumed thatρ ↗, gg′ > 0, and ρ̃(a+) ≥ 0. By the first line of
Table3, ρ̃ ↗. Hence,ρ̃(b−) > ρ̃(a+) ≥ 0. It remains to refer to the first line
of Table4.
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4. Derived Special-case Rules for Monotonicity
A slightly stronger version of the basic special-case rule for monotonicity men-
tioned in Section1 is

Proposition 4.1 ([15, Proposition 1.1], [16, Proposition 1.1]). Suppose that
f(a+) = g(a+) = 0 or f(b−) = g(b−) = 0.

1. If ρ↗ on (a, b), thenr′ > 0 and hencer ↗ on (a, b).

2. If ρ↘ on (a, b), thenr′ < 0 and hencer ↘ on (a, b).

Developments presented in Section2provide further insight into this special-
case rule as well. Indeed, in view of (2.1), Proposition4.1 can be restated as
follows.

Proposition 4.2. Suppose thatf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0.

1. If ρ↗ on (a, b), thenρ̃ > 0 on (a, b).

2. If ρ↘ on (a, b), thenρ̃ < 0 on (a, b).

To prove Proposition4.2, one may observe that for ally ∈ (a, b)

ρ̃(y) = hy(y)/|g′(y)|,

wherehy(u) = f ′(y) g(u)−g′(y) f(u), as defined in the first proof of Lemma2.1.
In that proof, it was shown that the functionhy is increasing on(a, y].

On the other hand, the conditionf(a+) = g(a+) = 0 implies thathy(a+) =
0. It follows thathy(y) > hy(a+) = 0. Hence,̃ρ(y) > 0 for all y ∈ (a, b). Now
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(2.1) shows that indeedr′ > 0 and hencer ↗ on (a, b). The casef(b−) =
g(b−) = 0 is similar. The above reasoning is very close to the lines of the proof
of [15, Proposition 1.1].

Whenever it is indeed the case thatf(a+) = g(a+) = 0 or f(b−) = g(b−)
= 0, the special-case rules are more convenient, because then one need not
further investigate the behavior of ratior near the endpoints,a andb.

The main question in this section is the following: under the same special
condition —f(a+) = g(a+) = 0 or f(b−) = g(b−) = 0, can the derived
general rules given by Table2 be similarly simplified?

Proposition4.3 below shows that the answer to this question is yes. More-
over, we shall also consider the case whenf and g both vanish at an inte-
rior point of the interval, rather than at one of its endpoints. To obtain these
“derived” special-case rules, we shall again rely mainly on the key lemma,
Lemma2.1. We shall also rely here on the “basic” special-case rules given
by Proposition4.1or, rather, on their re-formulation given by Proposition4.2.

Proposition 4.3. The special-case rules given by Table6 are true.

Proof of Proposition4.3. It suffices to consider the first line of Table6, so that
it is assumed thatf(a+) = g(a+) = 0 andρ ↗↘ on (a, b); that is, there
exists somec ∈ (a, b) such thatρ↗ on (a, c) andρ↘ on (c, b). The condition
g(a+) = 0 implies thatgg′ > 0 on (a, b). Then, by the second line of Table3,
ρ̃↘ on(c, b). Also, by part (1) of Proposition4.2, ρ̃ > 0 on(a, c). Hence, there
exists somed ∈ [c, b] such that̃ρ > 0 on (a, c) ∪ (c, d) andρ̃ < 0 on (d, b). (At
that,d = b if ρ̃(b−) ≥ 0 (and hencẽρ(c+) > 0), andd ∈ [c, b) if ρ̃(b−) < 0.)
Therefore and in view of (2.1), r′ > 0 on (a, c) ∪ (c, d) andr′ < 0 on (d, b).
Sincer is differentiable and hence continuous on(a, b), it follows thatr ↗ on
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endpoint condition ρ r

f(a+) = g(a+) = 0 ↗↘ ↗ or↗↘
f(a+) = g(a+) = 0 ↘↗ ↘ or↘↗
f(b−) = g(b−) = 0 ↗↘ ↘ or↗↘
f(b−) = g(b−) = 0 ↘↗ ↗ or↘↗

Table 6: Derived special rules for monotonicity, whenf andg both vanish at an
endpoint.

(a, d) andr ↘ on (d, b). Thus, ifd = b thenr ↗ on (a, b); and if d ∈ [c, b)
thenr ↗↘ on (a, b).

In the course of the proof of Proposition4.3, a little more was established
than stated in Proposition4.3. Namely, based on the sign ofρ̃(b−), one can
discriminate between the two alternative monotonicity patterns ofr given in the
first line of Table6; similarly, for the other three lines of Table6. Thus, one has
the following.

Proposition 4.4. The special-case rules given by Table7 are true.

Let us also consider the case when bothf andg vanish at an interior point
of the interval.

Proposition 4.5. Suppose that the following conditions hold:

• −∞ ≤ a < b < c ≤ ∞;
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endpoint condition ρ ρ̃(a+) ρ̃(b−) r

f(a+) = g(a+) = 0 ↗↘ ≥ 0 ↗
f(a+) = g(a+) = 0 ↗↘ < 0 ↗↘
f(a+) = g(a+) = 0 ↘↗ ≤ 0 ↘
f(a+) = g(a+) = 0 ↘↗ > 0 ↘↗
f(b−) = g(b−) = 0 ↗↘ ≤ 0 ↘
f(b−) = g(b−) = 0 ↗↘ > 0 ↗↘
f(b−) = g(b−) = 0 ↘↗ ≥ 0 ↗
f(b−) = g(b−) = 0 ↘↗ < 0 ↘↗

Table 7:Specific derived special-case rules for monotonicity, whenf andg both vanish
at an endpoint.

• f andg are differentiable functions defined on the set(a, c) \ {b};

• on each of the intervals(a, b) and(b, c), the functionsg andg′ do not take
on the zero value and do not change their respective signs;

• lim
x→b

f(x) = lim
x→b

g(x) = 0;

• there exists a finite limitρ(b) := lim
x→b

ρ(x) and hence, by l’Hospital’s rule,

the limit r(b) := lim
x→b

r(x) = ρ(b), wherer(x) := f(x)/g(x) andρ(x) :=

f ′(x)/g′(x) for x ∈ (a, c) \ {b}, so that the functionsr andρ are extended
from (a, c) \ {b} to (a, c).
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Then the special-case rules given by Table8 concerning the monotonicity
patterns ofρ andr on (a, c) are true.

ρ r

↗ ↗
↘ ↘
↘↗ ↗ or↘ or↘↗
↗↘ ↗ or↘ or↗↘

Table 8:Derived special-case rules for monotonicity, whenf andg both vanish at an
interior point.

Proof of Proposition4.5. Lines 1 and 2 of Table8 follow immediately from
Proposition4.1. Line 4 can be deduced from line 3 by the “vertical reflection”,
that is, by replacingf by−f . It remains to consider line 3. Thus, it is assumed
that there exists someξ ∈ (a, c) such thatρ↘ on (a, ξ) andρ↗ on (ξ, c). One
of the following three cases must occur.
Case 1: ξ = b. Then, by Proposition4.1, r ↘ on (a, b) andr ↗ on (b, c), so
thatr ↘↗ on (a, c).
Case 2: ξ ∈ (b, c). Thenρ ↘ on (a, b) (sinceρ ↘ on (a, ξ)). Hence, by
Proposition4.1, one hasr ↘ on (a, b). On the other hand,ρ ↘ on (b, ξ) and
ρ ↗ on (ξ, c). Hence, by Proposition4.3 (line 2 of Table6), r ↘ or ↘↗ on
(b, c). It follows thatr ↘ or↘↗ on (a, c).
Case 3: ξ ∈ (a, b). This case is similar to Case 2, but here one will conclude
thatr ↗ or↘↗ on (a, c).

This verifies line 3 of Table8.
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5. Discussion
Remark 1. It is easy to see from the proofs of the key lemma and the rules based
on it that, instead of the requirement forf andg to be differentiable on(a, b) it
would be enough to assume, for instance, only thatf andg are continuous and
both have finite right derivativesf ′+ andg′+ (or finite left derivativesf ′− andg′−)
on (a, b), and then use these one-side derivatives in place off ′ andg′. (Cf. [15,
Remark 1.2].)

One corollary of Remark1 is as follows.

Corollary 5.1. Take anyc ∈ (a, b), and letf be any convex real function on
(a, b). Then the ratiof(x)/(x − c) switches at most once from decreasing to
increasing whenx increases fromc to b. Similarly, this ratio switches at most
once from increasing to decreasing whenx increases froma to c.

Remark 2. Here Corollary5.1 appears as a particular application of Corol-
lary 3.1 (enhanced in accordance with Remark1). However, one could, vice
versa, deduce Corollary3.1 from Corollary 5.1 by “changing the variable”
from x to X := g(x), so thatf(x) = F (X) := f(g−1(X)), g(x) = X,
r(x) = F (X)/X, andρ(x) = F ′(X).

An obvious special case of Corollary5.1 is:

Corollary 5.2. Take anyc ∈ (a, b), and letf be any convex real function on
(a, b). Letrc(x) := (f(x)− f(c))/(x− c) for x ∈ (a, b) \ {c}, andrc(c) := k,
wherek is an arbitrary point in the interval[f ′−(c), f ′+(c)]. Then the ratiorc(x)
increases whenx increases froma to b.
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Corollary 5.2 is immediate from Proposition4.5 enhanced in accordance
with Remark1.

Remark 3. This remark complements Remark1, which allowed using one-side
derivatives off and g in place off ′ and g′. However, ifg is differentiable
on (a, b), then the phrase “and do not change their respective signs” in the
assumption “g and g′ do not take on the zero value and do not change their
respective signs on(a, b)” stated in the beginning of Section1 is superfluous.
Indeed, ifg is differentiable, then it is continuous and therefore does not change
sign, since it does not take on the zero value. As for the implication

g′ does not change sign provided thatg′ does not take on the zero value,

it follows by the intermediate value theorem for the derivative (see e.g. [6,
Theorem 5.16]), as was pointed out in [5].

Remark 4. Moreover, iff andg are differentiable on(a, b) andρ is monotonic
on (a, b), thenρ and ρ̃ are continuous on(a, b). Indeed, take anyc ∈ (a, b).
Sinceρ is monotonic, there exist limitsρ(c−) andρ(c+). On the other hand,
the ratio

f(x)− f(c)

g(x)− g(c)
=

(f(x)− f(c))/(x− c)

(g(x)− g(c))/(x− c)

tends toρ(c) asx → c. Next, by the Cáuchy mean value theorem, this ratio
tends toρ(c−) asx ↑ c and toρ(c+) asx ↓ c. Thus,ρ(c−) = ρ(c) = ρ(c+),
for eachc ∈ (a, b), so thatρ is continuous on(a, b). Now it is seen that̃ρ is
continuous as well, sincẽρ = (ρg − f) sign(g′).
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Remark 5. All the stated rules for monotonicity have natural “non-strict” ana-
logues, with strict inequalities and terms “increasing” and “decreasing” re-
placed by the corresponding non-strict inequalities and terms “non-decreasing”
and “non-increasing”.

Remark 6. Lemma2.1shows that (given the sign ofgg′) the monotonicity pat-
tern ofρ̃ is completely determined by the monotonicity pattern ofρ. It is readily
seen — especially from the second proof of Lemma2.1 — that the relation be-
tween the patterns ofρ and ρ̃ is reversible, so that, given the monotonicity
pattern ofρ̃ and the sign ofgg′, the monotonicity pattern ofρ can be completely
restored. That is, each line of Table3 can be read right-to-left. For instance, if
ρ̃ ↗ andgg′ > 0, thenρ ↗. Thus, given the sign ofgg′, the monotonicity pat-
tern ofρ̃ carries the same amount of information as the monotonicity pattern of
ρ.

In contrast, it should now be clear that the relation between the monotonic-
ity patterns ofr and ρ is not reversible in any reasonable sense. The pattern
of ρ can be anything even if the pattern ofr and the sign ofgg′ are given.
For instance, ifρ̃ is positive on(a, b) then, by(2.1), r ↗ on (a, b); at that, ρ̃
and henceρ can be made as “wavy” as desired. To be even more specific, let
(a, b) := (0,∞) or (−∞, 0), g(x) := 1/x, andρ̃(x) := 2 + sinx, so thatρ̃ > 0
everywhere. Next, in accordance with(2.1), let

r(x) :=

∫ x

0

|g′(u)|
g(u)2

ρ̃(u) du(5.1)

= 1 + 2x− cosx, whence
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f(x) = g(x) r(x) = (1 + 2x− cosx)/x and

ρ(x) = 1− cosx− x sin x,

x ∈ (−∞, 0) ∪ (0,∞), so thatr, ρ, andρ̃ can be extended toR, by continuity.
Thenr′ > 0 and hencer ↗ on R, whileρ is “infinitely wavy” on R, just asρ̃
is; see Figures1 and2.

-Π Π

x

5

rHxL, ΡHxL

Figure 1: Graphs ofr andρ: r, increasing; ρ, non-monotonic, “infinitely
wavy".

Remark 7. As was pointed out in [16] (see Remark 1.21 and Examples 1.2 and
1.3 therein), “the waves ofr may be thought of as obtained from the waves of
ρ by a certain kind of delaying and smoothing down procedure." Here, at least
the “smoothing down" part is explicit in view of(5.1), since the “waves" of̃ρ
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�Π Π
x

�2

2

Ρ�x�, Ρ� �x�

Figure 2: The monotonicity pattern of̃ρ exactly follows that ofρ, and vice
versa, in accordance with Table3. Recall that herẽρ(x) = 2 + sinx > 0 for all
x ∈ R.

are in perfect unison with those ofρ, and hence vice versa. In this connection,
one can also consider the representation

r(x) =
r(c)g(c) +

∫ x

c
ρ(u)g′(u) du

g(c) +
∫ x

c
g′(u) du

for x ∈ [c, d] ⊂ (a, b)

of r on [c, d], which is (in the case whengg′ > 0) a weighted-average of the
“initial” value r(c) and the values ofρ on [c, d].

As for the waves ofr being “delayed” relative to the waves ofρ, it should be
assumed that two particles are moving, one along the graph ofr and the other
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one along the graph ofρ, left-to-right if gg′ > 0 and right-to-left ifgg′ < 0; at
that, the abscissas of the two particles are always staying equal to each other.

Remark 8. One can see that, under certain general conditions,ρ mustbe non-
monotonic on an interval whiler is monotonic on it. Indeed, suppose thatgg′ >
0 on(a, b) andr forms an increasing “half-wave” on an interval[c, d] ⊂ (a, b);
that is, r′ > 0 on (c, d) and r′(c) = r′(d) = 0. Assume also thatf and g
are twice differentiable on(a, b), r′′(c) 6= 0, and r′′(d) 6= 0. It follows that
r′′(c) > 0 andr′′(d) < 0. It is easy to check that

ρ = r + r′ v, where v := g/g′;

cf. [16, (1.8), (1.7)]. Then one can see that the conditionsr′(c) = r′(d) = 0
imply ρ(c) = r(c) and ρ(d) = r(d). Moreover,ρ′(c) = r′′(c) v(c) > 0 and
ρ′(d) = r′′(d) v(d) < 0, so thatρ is necessarily non-monotonic on(c, d).

See Figure3, where[c, d] := [−π/2, π/2], f(x) := ex sin x, andg(x) := ex,
so thatr(x) = sinx and ρ(x) =

√
2 sin(x + π/4), for all x ∈ R; cf. [16,

Example 1.2].

Remark 9. The latter example also illustrates a general situation. Indeed, with-
out loss of generality,g > 0. “Changing the variable”x toX := ln g(x), one
hasg(x) = eX , so that one may assume thatg(x) = ex and hencev(x) = 1
for all x. Next, ifr is smooth enough on a finite interval[c, d] then, for any
T > d − c, one can extendr from the interval[c, d] to a smooth periodic func-
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x

r�x�, Ρ�x�

�Π�2 Π�2

Figure 3:r, increasing; ρ, non-monotonic.

tion of periodT onR, so that one has the Fourier series representations

r(x) = A0 +
∞∑

n=1

(An cosnkx+Bn sinnkx) and hence

ρ(x) = A0 +
∞∑

n=1

√
1 + n2k2

(
An cos(nk(x+ ψn)) +Bn sin(nk(x+ ψn))

)
for some real sequences(An) and (Bn) and all x ∈ R, wherek := 2π

T
and

ψn := arctan(nk)
nk

. Thus, with the variablex transformed intoX = ln g(x), the
nth harmonic componentAn cosnkx+Bn sinnkx of r has a

√
1 + n2k2 times

smaller amplitude and a phase delayed byψn, as compared with the amplitude
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and phase of thenth harmonic component ofρ, for every naturaln. It also
follows thatρ conveys a more powerful signal thanr does, in the sense that∫ d

c

ρ(x)2 |d ln |g(x)|| ≥
∫ d

c

r(x)2 |d ln |g(x)||.

Remark 10. Note that each monotonicity pattern ofr in Tables1 and 2 does
actually occur, for each set of conditions onρ and gg′. Here let us provide a
rather general description of how this can happen, suggested by the weighted-
average representation ofr given in Remark7. For instance, consider the first
line of Table1, where it is assumed thatρ↗ andgg′ > 0 on(a, b). Suppose here
also thatg > 0, f = f0+C for some constantC, f0(a+) ∈ R, g(a+) ∈ (0,∞),
ρ(a+) ∈ R, and ρ(b−) = ∞ (for example, one can takea = 0, b = ∞,
g(x) = 1+x, andf0(x) = ex for all x > 0). LetC0 := ρ(a+) g(a+)−f0(a+).
If C > C0, thenρ(a+) < r(a+), so that, in view of identity(1.1), r′ < 0 and
hencer ↘ in a right neighborhood ofa. Now the first line of Table1 implies
that r ↘ or ↘↗ on (a, b). Moreover, sinceρ ↗ andρ(b−) = ∞, the pattern
r ↘ on (a, b) would imply that in a left neighborhood ofb one hasρ > r and
hence, by(1.1), r ↗, which is a contradiction. This leaves the patternr ↘↗
on (a, b) as the only possibility; that is,r ↘ on (a, c) and r ↗ on (c, b), for
somec ∈ (a, b), so that each of the patterns↘↗,↘, and↗ does occur forr.
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6. Applications and Illustrations
6.1. Monotonicity properties of a ratio considered by Bor-

wein, Borwein and Rooin

Borweinet al. [9] showed that the ratio

(6.1)
ax − bx

cx − dx
,

x 6= 0 (extended tox = 0 by continuity), is convex inx ∈ R provided that

(6.2) a > b ≥ c > d > 0.

They also determined the values ofa, b, c, andd for which ratio (6.1) is log-
convex.

Moreover, it was shown in [9] that ratio (6.1) is increasing inx ∈ R under
condition (6.2). Here the monotonicity pattern of ratio (6.1) will be determined
for any positive values ofa, b, c, andd, whether condition (6.2) holds or not.
Dividing both the numerator and denominator of ratio (6.1) by dx, one may
assume without loss of generality thatd = 1. Denoting thencx by y, one
rewrites ratio (6.1) as

(6.3) r(y) :=
yβ − yα

y − 1

for y ∈ (0, 1) ∪ (1,∞) andr(1) := limy→1 r(y) = β − α, whereα := ln b
ln c

and
β := ln a

ln c
. Without loss of generality, it will be assumed that

β > α.
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Proposition 6.1.The monotonicity pattern of ratior in (6.3) is given by Table9,
where the trivial case withα = 0 andβ = 1 must be excluded.

Case r

I. α ≤ 0, β ≤ 1 ↘
II. α < 0, β > 1 ↘↗
III. α > 0, β < 1 ↗↘
IV. α ≥ 0, β ≥ 1 ↗

Table 9: The monotonicity pattern of ratior in (6.3).

Note that condition (6.2) corresponds to the case whenβ > α ≥ 1, which is
a subcase of Case IV of Table9.

Proof of Proposition6.1. Let f(y) := yβ − yα andg(y) := y − 1, so thatf/g
equals the ratior in (6.3). Then

ρ(y) = f ′(y)/g′(y) = βyβ−1 − αyα−1 and

ρ′(y) =
(
β(β − 1)yβ−α − α(α− 1)

)
yα−2.

Hence,

y∗ :=

(
α(α− 1)

β(β − 1)

) 1
β−α

is the only root ofρ′ in (0,∞) provided thatα(α− 1)β(β − 1) > 0; otherwise,
ρ′ has no root in(0,∞).
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For each of the Cases I and IV in Table9, two subcases will be considered.
At that, remember the assumptionβ > α.
Subcase I.1:α ≤ 0 and β ≤ 0, so thatα < β ≤ 0. Hereα(α − 1) > 0
andβ(β − 1) ≥ 0. Hence, for ally > 0, one hasρ′(y) < 0 iff y < y∗ (letting
y∗ := ∞ if β = 0). Therefore,ρ ↘↗ on (0,∞) (ρ ↘ on (0,∞) if β = 0). It
follows by Proposition4.5thatr ↗ or↘ or↘↗ on(0,∞). Also,r(∞−) = 0
while r > 0 on (1,∞), so thatr ↘ in a left neighborhood of∞. Thus,r ↘ on
(0,∞) in Subcase I.1.
Subcase I.2:α ≤ 0 and 0 < β ≤ 1, so thatα ≤ 0 < β ≤ 1 (but (α, β) 6=
(0, 1)). Hereρ′ < 0 and henceρ↘ on (0,∞). Thus, by Proposition4.5, r ↘
on (0,∞) in Subcase I.2 as well.
Case II.α < 0 andβ > 1. Here, for ally > 0, one hasρ′(y) < 0 iff y < y∗.
Therefore,ρ ↘↗ on (0,∞). It follows by Proposition4.5 that r ↗ or ↘ or
↘↗ on (0,∞). Also, herer(0+) = r(∞−) = ∞. Thus,r ↘↗ on (0,∞) in
Case II.
Case III.α > 0 and β < 1, so that0 < α < β < 1. Here, for ally >
0, one hasρ′(y) > 0 iff y < y∗. Therefore,ρ ↗↘ on (0,∞). It follows
by Proposition4.5 that r ↗ or ↘ or ↗↘ on (0,∞). Also, herer(0+) =
r(∞−) = 0 andr > 0 on (0,∞). Thus,r ↗↘ on (0,∞) in Case III.
Subcase IV.1:0 ≤ α < 1 andβ ≥ 1, so that0 ≤ α < 1 ≤ β (but (α, β) 6=
(0, 1)). Hereρ′ > 0 and henceρ↗ on (0,∞). Thus, by Proposition4.5, r ↗
on (0,∞) in Subcase IV.1.
Subcase IV.2:α ≥ 1 andβ ≥ 1, so that1 ≤ α < β. Here, for ally > 0,
one hasρ′(y) < 0 iff y < y∗. Therefore,ρ ↘↗ on (0,∞) (ρ ↗ on (0,∞) if
α = 1). It follows by Proposition4.5 thatr ↗ or↘ or↘↗ on (0,∞). Also,
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herer(0+) = 0 andr > 0 on (0,∞). Thus,r ↗ on (0,∞) in Subcase IV.2 as
well.

The matter of the convexity of ratio (6.1) without condition (6.2) is more
complicated and will not be pursued here.

6.2. Monotonicity and log-concavity properties of the partial
sum of the Maclaurin series forex

Forx ∈ R andk ∈ {0, 1, . . . }, consider

Sk(x) :=
k−1∑
j=0

xj

j!
,

thekth partial sum for the Maclaurin series forex, where00 := 1 andS0 := 0.
For allk ∈ {1, 2, . . . }, one hasS ′k = Sk−1 andSk(x) > 0 if x ≥ 0.

Consider the ratio

sk :=
Sk+1

Sk

on (0,∞). Applying Proposition4.1 to this ratiok times and observing that
s1(x) = 1 + x is increasing inx, one obtains

Proposition 6.2. For eachk ∈ {1, 2, . . . }, one hass′k > 0 and hencesk ↗ on
(0,∞).

Sinces′k = 1− Sk+1Sk−1/S
2
k , one obtains
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Corollary 6.3. For eachx > 0, the partial sumSk(x) is strictly log-concave in
k ∈ {1, 2, . . . }.

Corollary6.3also follows from results of [20].

6.3. Monotonicity and log-concavity properties of the remain-
der in the Maclaurin series for ex

Forx ∈ R andk ∈ {0, 1, . . . }, consider

Rk(x) := ex −
k−1∑
j=0

xj

j!
,

thekth remainder for the Maclaurin series forex. For all k ∈ {1, 2, . . . }, one
hasR′k = Rk−1 andRk(0) = 0; also,R0(x) = ex > 0, so thatsignRk(x) = 1
if x > 0 andsignRk(x) = (−1)k if x < 0.

Consider the ratio

rk :=
Rk+1

Rk

,

extended fromR\{0} to R by continuity. Applying Proposition4.5to this ratio
k times and observing thatr0(x) = 1− e−x is increasing inx ∈ R, one obtains

Proposition 6.4. For eachk ∈ {0, 1, . . . }, the ratiork is increasing onR.

Sincer′k = 1−Rk+1Rk−1/R
2
k, one has

Corollary 6.5. For eachx 6= 0, the remainder|Rk(x)| is log-concave ink ∈
{0, 1, . . . }.
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Following along the lines of the proof of Proposition4.5, one can show that
|Rk(x)| is actually strictly log-concave ink ∈ {0, 1, . . . } for each realx 6= 0.
Corollary6.5also follows from results of [14, 20].

6.4. Becker-Stark and Anderson-Vamanamurthy-Vuorinen in-
equalities and related monotonicity properties

Using series expansions based on complex analysis, Becker and Stark [8] ob-
tained the inequalities

(6.4)
4

π

x

1− x2
< tan

(πx
2

)
<
π

2

x

1− x2
for x ∈ (0, 1)

as a two-sided rational approximation to the tangent function. This approxi-
mation is rather tight, since the ratio of the upper and lower bounds in (6.4) is
π
2
/ 4

π
= 1.233 . . .. Moreover, as noted in [8], the constant factors4

π
and π

2
in

(6.4) are the best possible ones.
Anderson, Vamanamurthy and Vuorinen [5] obtained another nice inequal-

ity:

(6.5)

(
sin x

x

)3

> cosx for x ∈ (0, π/2),

whose hyperbolic counterpart,

(6.6)

(
sinh x

x

)3

> coshx for x > 0,
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was implicit in [5].
Here we provide monotonicity properties for appropriate ratios, which imply

inequalities (6.4), (6.5), and (6.6) in a quite elementary way. As will be seen
from our proof, inequalities (6.4) turn out to be indirectly related with (6.5) and
(6.6).

Let us begin with the monotonicity properties pertaining to inequalities (6.5)
and (6.6).

Proposition 6.6. The ratio (
sin x

x

)3

cosx

increases from1 to∞ asx increases from0 to π/2.

Proof. The cubic root of this ratio is the ratior(x) := sin x cos−1/3 x
x

, whose
derivative ratioρ(x) = 2

3
cos2/3 x+ 1

3
cos−4/3 x is increasing inx ∈ (0, π/2). It

remains to refer to the special-case rule for monotonicity (Proposition4.1).

Quite similarly one can prove

Proposition 6.7. The ratio (
sinh x

x

)3

coshx
increases from1 to∞ asx increases from0 to∞.

Clearly, inequalities (6.5) and (6.6) immediately follow from Propositions6.6
and6.7, respectively.

Now one is prepared to consider the monotonicity property pertaining to
inequalities (6.4).
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Proposition 6.8. The ratio

r(x) :=
x

1−x2

tan(πx/2)

increases from2/π to π/4 as x increases from0 to π/2. Hence, one has in-
equalities(6.4) and also the mentioned fact that the constant factors4

π
and π

2
in

(6.4) are the best possible ones.

Proof. Let f(x) := cot(πx/2) andg(x) := (1 − x2)/x for x ∈ (0, 1), so that
f/g = r. Let

r1(x) := ρ(x) =
f ′(x)

g′(x)
=
f1(x)

g1(x)
,

wheref1(x) := π sin−2(πx/2) andg1(x) := 2 + 2x−2, x ∈ (0, 1). Consider
also

ρ̃ = g2 r′

|g′|
, ρ̃1 := g2

1

r′1
|g′1|

, and ρ1(x) :=
f ′1(x)

g′1(x)
=

2

π

cos t(
sin t

t

)3 ,

wherex ∈ (0, 1) andt := πx/2, so thatρ1 ↘ on (0, 1), by Proposition6.6.
Also, ρ̃1(0+) = π

3
− 4

π
< 0 and ρ̃1(1−) = π > 0. Hence, by Corollary3.2

(Table4, line 3),r1 ↘↗ on (0, 1); that is,ρ ↘↗ on (0, 1). Next, ρ̃(0+) = 0.
Therefore, by Proposition4.4(Table7, line 7),r ↗ on (0, 1).

This proof of Proposition6.8provides a good illustration of the monotonicity
rules developed in Sections3 and4.
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6.5. A monotonicity property of right-angled triangles in hy-
perbolic geometry

The Pythagoras theorem for the Poincaré model of hyperbolic geometry (see
e.g. [7, Theorem 7.11.1]) states that for any right-angled (geodesic) triangle
with a hypotenuse (of geodesic length)c and cathetia andb one has

cosh c = cosh a cosh b.

Proposition 6.9. For the isosceles (witha = b) right-angled hyperbolic trian-
gle, the ratioc/a increases from

√
2 to 2 asa increases from0 to∞.

Proof. Fora > 0, let f(a) := arccosh(cosh2 a) andg(a) := a, so that

c

a
=
f(a)

g(a)
= r(a) and hence ρ(a) =

f ′(a)

g′(a)
=

2 cosh a√
1 + cosh2 a

.

Therefore,ρ(a) increases from
√

2 to 2 asa increases from0 to∞. The same
holds forr(a), by the special-case rule for monotonicity (Proposition4.1) and
l’Hospital’s rules for limits.
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