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Abstract

Elsewhere we developed rules for the monotonicity pattern of the ratio r := f/g
of two differentiable functions on an interval (a,b) based on the monotonicity
pattern of the ratio p := f'/¢’ of the derivatives. Those rules are applicable
even more broadly than I'Hospital’s rules for limits, since in general we do not
require that both f and g, or either of them, tend to 0 or oo at an endpoint
or any other point of (a,b). Here new insight into the nature of the rules for
monotonicity is provided by a key lemma, which implies that, if p is monotonic,
then /5 := r' - ¢*/|¢/| is so; hence, ' changes sign at most once. Based on
the key lemma, a number of new rules are given. One of them is as follows:
Suppose that f(a+) = g(a+) = 0; suppose also that p "\, on (a,b) - that is,
for some ¢ € (a,b), p / (p is increasing) on (a,c) and p \, on (c,b). Thenr /
or /\, on (a,b). Various applications and illustrations are given.

2000 Mathematics Subject Classification: 26A48, 26A51, 26A82, 26D10, 50C10,

53A35.

Key words: L'Hospital-type rules, Monotonicity, Borwein-Borwein-Rooin ratio,
Becker-Stark inequalities, Anderson-Vamanamurthy-Vuorinen inequali-
ties, log-concavity, Maclaurin series, Hyperbolic geometry, Right-angled
triangles.
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Let —oco < a < b < oco. Let f andg be differentiable functions defined on the
interval (a, b), and let

It is assumed throughout (unless specified otherwise)dtlaaid ¢’ do not take
on the zero value and do not change their respective sigria,oin In [16],
general “rules” for monotonicity patterns, resembling the usual I'Hospital rules o |pospitar-Type Rules for

for limits, were given. In particular, according tof, Proposition 1.9], one has Monotonicity

the dependence of the monotonicity patterm ¢bn (a, b)) on that of losif Pinelis
fl

p-= g Title Page

(and also on the sign @fy’) as given by Tablé. The vertical double line in the Contents

table separates the conditions (on the left) from the corresponding conclusions PP >
(on the right).

Here, for instancey " means that there is somec (a,b) such that
r \ (that is,r is decreasing) offa,c) andr " on (¢,b). Now suppose that Go Back
one also knows whether ~ or r X\, in a right neighborhood af and in a left

< >

neighborhood ob; then Tablel uniquely determines the monotonicity pattern Close
of r. Quit
Clearly, the stated I'Hospital-type rules for monotonicity patterns are helpful Page 4 of 42
wherever the I'Hospital rules for limits are so, and even beyond that, because
these monotonicity rules do not require that bgtland g (or either of them) 3. Ineq, Pure and Appl. Math. 7(2) Art. 40, 2006
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p | 9d | r

>0 SorN or\
N | >0 Sorx, or M\,
<0 orx, or M\,
N | <0 Sor orN, A~

Table 1: Basic general rules for monotonicity.

The proof of these rules is very easy if one additionally assumes that the
derivativesf’ andg’ are continuous and has only finitely many roots ifu, b)
(which will be the case if, for instance,is not a constant whilg¢ and g are
real-analytic functions ofu, b]). Such an easy proof|, Section 1] is based on
the identity

(1.1) gr'=(p-r)gd,

which is easy to check. A proof without using the additional conditions (that
the derivatives” andg’ are continuous and has only finitely many roots) was
given in [L€].

Based on Tablé, one can generally infer the monotonicity patterm given
that of p, however complicated the latter is. In particular, one has the rules given
by Table2.

Each monotonicity pattern of in Tables1 and2 does actually occur; see
Remarkl10 for details.

On L'Hospital-Type Rules for
Monotonicity

losif Pinelis

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 5 of 42

J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edum
http://jipam.vu.edu.au/

p | ad | r

SN >0 Sor or N or N or N N
N | >0 Sorx or N orN or N
SN <0 Sorx or N orN, or N
N | <0 or or /N orN\, 7 orN, N\

Table 2: Derived general rules for monotonicity.
On L'Hospital-Type Rules for

Monotonicity
In the special case when bothand g vanish at an endpoint of the inter- osit Pinelis
val (a,b), 'Hospital-type rules for monotonicity and their applications can be
found, in different forms and with different proofs, inl, 12, 13, 10, 2, 3, 1, 4,
, 15, 16, 17, 18). Title Page
Thespecial-caseule can be stated as follows: Suppose {f{at-) = g(a+) Contents
=0or f(b—) = g(b—) = 0; suppose also thatis increasing or decreasing on P 5

the entire intervala, b); then, respectivelyy is increasing or decreasing on
(a,b). When the conditiory (a+) = g(a+) = 0 or f(b—) = g(b—) = 0 does < >
hold, the special-case rule may be more convenient, because then one does not

. . . . . Go Back
have to investigate the monotonicity pattern of rativear the endpoints of the
interval (a, b). Close
A unified treatment of the monotonicity rules, applicable whether orfnot Quit
andg vanish at an endpoint df., b), can be found in16].
Page 6 of 42

L'Hospital’s rule for limits when the denominator tendstodoes not have
a “special-case" analogue for monotonicity; see €.@, $ection 1] for details.
A i . . J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006
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wide variety of applications of these I'Hospital-type rules for monotonicity

patterns were given: in areas of analytic inequalitigs'f, 16, 19], approx-

imation theory [7], differential geometry 10, 11, 12, 21], information the-

ory [15, 16], (quasi)conformal mappings [ 2, 3, 4], statistics and probability
[13, 16, 17,14, etc.

Clearly, the stated rules for monotonicity could be helpful wiear ¢’ can
be expressed simpler thghor g, respectively. Such functiong and g are
essentially the same as the functions that could be taken to play the rola of

the integration-by-parts formulfudv = uv — [ v du; this class of functions On L'Hospital-Type Rules for
includes polynomial, logarithmic, inverse trigonometric and inverse hyperbolic Monotonicity
functions, and as well as non-elementary “anti-derivative” functions of the form losif Pinelis

z—c+ [ h(u)duorz — c+ffh(u) du.

“Discrete” analogues, fof andg defined onZ, of the I'Hospital-type rules
for monotonicity are available as weli(]].

Let us conclude this Introduction by a brief description of the contents of the
paper. < >

Section2 contains what is referred to in this paper as the key lemma (Lemma

. . . : , . < | 2

2.1). This lemma provides new insight into the nature of the I'Hospital-type
rules for monotonicity, as well as a basis for further developments. The key Go Back
lemma states that the monotonicity pattern of function= ' - g?/|¢| is the

Title Page

Contents

same as that gf if g¢’ > 0, and opposite to the pattern pff g¢’ < 0. Clearly, Close

from this lemma, such rules as the ones given by Talkdee easily deduced, Quit
sincesign(r’) = sign p. We present two proofs of the key lemma: one proof is Page 7 of 42

short and self-contained, even if somewhat cryptic; the other proof is longer but

apparently more intuitive. J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006
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the key lemma. As stated above, Tableniquely determines the monotonicity
pattern (* or \) of r on (a,b) provided that one knows (i) the monotonicity
pattern ofp on (a, b), (ii) the sign ofgg¢’ on (a, b), and also (iii) whether  or

r \, in a right neighborhood af and in a left neighborhood &t In Section3,

it is noted (Corollary3.2) that, instead of these assumptions (i)—(iii), it suffices
to know simply the signs of the limitg(a+) and 5(b—) in order to determine
uniquely the monotonicity pattern ofon (a, b) — provided thap is monotonic
on (a,b). However, if the sign of;¢’ on (a, b) is taken into account as well as
whetherp is increasing or decreasing ¢a, b), then (Corollary3.3) one needs
to determine the sign of only one of the limjia+) andj(b—).

In Sectiord, the stated special-case rule for monotonicity (withndg both
vanishing at an endpoint of the interval b)) is extended (Propositiors3and
4.4 to include the cases wheris not monotonic onia, b) but rather has one of
the patterns™\, or \_ . Moreover, it can be allowed that bofrandg vanish
at an interior point, rather than at an endpoint, of the interval (Proposit®n
These developments are based on the key lemma, as well.

In Sectionb, a general discussion concerning the interplay between the func-
tionsr, p, andp is presented as viewed from different angles.

Finally, in Section6, a number of applications and illustrations of the rules
for monotonicity are given.
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Lemma 2.1 (Key lemma). The monotonicity pattern{" or \) of the function
(2.1) p=9 T

on (a,b) is determined by the monotonicity patternoénd the sign of¢/,
according to Table.

p|og || b
S >0/
N | >0 N
S <0\
N <0

Table 3: The monotonicity pattern @fis the same as
that of p if g¢’ > 0, and opposite to the pattern pfif
gg < 0.

Proof of Lemma&.1. Let us verify the first line of Tabl8. So, it is assumed that
p / andgg’ > 0. This verification follows very closely the lines of the proof
of [ 16, Proposition 1.2].

Fix anyz andy such that

a<r<y<b
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and consider the functiol defined by the formula
h(u) = hy(u) == f'(y) g(u) — ¢'(y) f(u).
Forallu € (a,y), one has

W(u) = f'(y) g (v) —g'(y) f'(u) = g'(y) g'(w) (p(y) — p(u)) >0,

because;’ is nonzero and does not change sign(erb) andp " on (a,b).
Hence,h " on(a,y); moreover, being continuous,is increasing orta, y|.
Next, one has a key identity

(Aly) — p(x)) lg'(w)| = (h(y) — h(x)) + (p(y) — p(x)) g(x) ¢'(y);

here it is taken into account that is nonzero and does not change sign on
(a,b), so that|g'(y)|/|¢'(z)| = ¢'(y)/g'(x). The first summandh(y) — h(z),
on the right-hand side of this identity is positive — becaéise” on (a, y|;
the second summangh(y) — p(x)] g(x) ¢'(vy) is also positive — becausge
on (a, b) while g¢’ > 0 on (a,b) andg’ does not change sign dn, b). Thus,
py) > p(x).

This verifies the first line of Tabl&. Its second line can be deduced from the
first one by the “vertical reflection”; that is, by replacifigoy — f (and hence
r by —r, while keepingg the same). The third line can be deduced from the
second one by the “horizontal reflection”; that is, by “changing the variable”
from = to —z. Finally, the fourth line can be deduced from the third one by the
“vertical reflection”. O
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While the above proof is short and self-contained, it may seem somewhat
cryptic. Let us give another version of the proof, which is longer but perhaps
more illuminating (especially its Step 1). The latter proof makes use of the

following technical lemma.

Lemma 2.2. Leth be any real functioth on (a, b) such that for allx € (a, b)

(2.2) h(z) > h(z—) and (Dih)(xz) >0,
(2.3) where (D, h)(z) = lirAn }gf i—z

is the lower right Dini derivative (possibly infinite) of the functibmat pointz,
and
Ah := (Ah)(z; Az) := h(z + Ax) — h(z).

Thenh is nondecreasing ofu, b).

Proof. This statement is essentially well known, at least when the funétisn
continuous; cf., e.g., /7, Example 11.3 (1V)]. The following proof is provided
for the readers’ convenience. For an¥ (a,b) and any > 0, consider the set

E:=E,.:={y€[z,b): h(u) > h(zx) —e-(u—2x)Vu € [z,y)}.

ThenE # (), sincex € E. Therefore, there exists := ¢,. := sup F, and
¢ € [z,b] C [z,00]. It suffices to show that = b for everye > 0; indeed, then
one will haveh(u) > h(z) —e- (u—z) forall u € [x,b) and alle > 0, whence
h(u) > h(z) forall x € (a,b) andu € [z, b).

To obtain a contradiction, assume thgt b for somes > 0. Then it is easy
to see that € E, and soj(u) > h(z) —e- (u—x) forall u € [z, c) and hence
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for u = c (sinceh(c) > h(c—)). Thus,h(c) > h(z) — € - (¢ — x). On the other
hand, the conditiom # b implies that(D,h)(c) > 0, and so, there exists some
d € (c,b) such thati(u) > h(c) —e - (u — ¢) forall u € [¢,d). It follows that
h(u) > h(z) —e- (u—z) forallu € [¢,d) and hence for all. € [z, d). Thatis,

d € E while d > ¢, which contradicts the conditian= sup E. H

The other proof of Lemma 1. Again, it suffices to verify the first line of Ta-
ble 3, so that it is assumed that / andgg’ > 0 on (a,b). Note first that

(2.4) p=(pg—f)sign(g).

Recall thatign(g’) is constant orta, b). The proof will be done in two steps.
Step 1 Here the first line of Tabl& will be verified under the additional con-
dition thatp is differentiable on(a, b). Then @.4) implies

(2.5)
(2.6)

p =y -g-sign(g), whence

sign(7) = sign(p).

Sincep ', one hag’ > 0 and hence, byA.6), o/ > 0, so thatp is nondecreas-
ing (on(a, b)). To obtain a contradiction, suppose now that the condjgigr
fails (that is,p is notstrictly increasing orja, b)). Thenp must be constant and
hencepy’ = 0 on some non-empty intervét, d) C (a,b). It follows by (2.6)
thaty’ = 0 on (¢, d), which contradicts the conditign .

Step 2 Here the first line of Tabl& will be verified without the additional
condition. In view of £.4), one has the obvious identity

(2.7) Ap=((Ap)-(g+Ag)+p-Ag—Af) -sign(q).

On L'Hospital-Type Rules for
Monotonicity

losif Pinelis

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 12 of 42

J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edum
http://jipam.vu.edu.au/

Dividing both sides of this identity byAz and lettingAz | 0, one has (cf.4.5))

Dyp=(Dip)-g-sign(g’) >0,

because (i) the function is differentiable and hence continuous; ¢i’ > 0;
(i) pg’ = f';and (iv)p  and henceDp > 0. It also follows from @.7) that
forall z € (a,b)

ple—) — plr) = lim Aj(z; Ax)

Aet0 On L'Hospital-Type Rules for
: . M t ..
= lim Ap(q;; AJJ) g(x) . Slgn(g’(x)) <0, onotonicity
e losif Pinelis

sincep " andgg’ > 0. Hence,p(xz) > p(xz—) for all z € (a,b). Thus, by
Lemma2.2, p is nondecreasing ofw, b). Title Page
Therefore, if the conditiop " fails, thenp is constant on some non-empty

Contents
interval (c,d) C (a,b). It follows by (2.4) thatpg — f = K on(c,d) for some
constantk’, whencep = (f + K)/g is differentiable or(c, d). Thus, according 4 dd
to Step 15 " on(c, d), which is a contradiction. O < >
Go Back
Close
Quit
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As before, the term “general rules for monotonicity” refers to the rules valid
without the special condition that both and ¢ vanish at an endpoint of the
interval(a, b).

From the key lemma (Lemma.l), the general I'Hospital-type rules for
monotonicity given by Tablé easily follow.

Corollary 3.1. The rules given by Tableare true.

. . . o On L'Hospital-T Rules f
Proof. Indeed, consider the first line of Table Thus, it is assumed that ~ " Osl\fl)gﬁotoynpisityues >

andgg’ > 0 on(a,b). Then, by the first line of Tabld, p  on (a,b). There-

fore, p(x) may change sign only from to + asz increases fronu to b. In osrhnel

view of (2.1), the same holds with’ instead ofs. More formally, there exists

somec € [a, b] such that’ < 0 on(a,c) andr’ > 0 on (¢, b). Thus, either Title Page

on(a,b) (whenc = a) orr \, on(a,b) (whenc = b) orr 7 on(a,b) (when Contents

¢ € (a,b)). This verifies the first line of Table. The other three lines of Table

can be verified similarly; alternatively, they can be deduced from the first line « dd

(cf. the end of the first proof of Lemmnial). O] < >
As was stated in the Introduction, if one also knows whethef or r \ in Go Back

a right neighborhood aof and in a left neighborhood of then Tablel uniquely Close

determines the monotonicity patternof Sometimes it is very easy to deter- _

mine the monotonicity patterns efnear an endpoing or b. For example, if Quit

r(b—) = oo, then it follows immediately that " in a left neighborhood of Page 14 of 42

b (given the knowledge that  or \, or " or 7\, on (a,b)). Or, ifitis

known thatr(a+) = 0 while » > 0 on (a, b), then it follows immediately that 3.1neq, Pure and Appl. Math. 7(2) Art. 40, 2006
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However, in some other cases it may be not so easy to determine the mono-
tonicity patterns of- neara or b, especially when the functionjsandg depend
on a number of parameters. In such situations, any additional shortcuts may
prove useful. With this in mind, let us present the following corollaries to the
key lemma.

Corollary 3.2. If p / or \, on(a,b), then the limits(a+) and p(b—) always
exist in[—oo, 00|, and p(a+) # p(b—). At that, the rules given by Tableare
true.

On L'Hospital-Type Rules for

ﬁ(a+) ‘ ﬁ(b—) H r Monotonicity
Z 0 Z 0 /‘ losif Pinelis
>0 <0 | 7\
<0 >0 % Title Page
<0 <0 AN Contents
Table 4: Ifp / or X\, then the signs of(a+) andj(b—) determine the pattern A S
of r on(a, b). < 4
Go Back
Corollary 3.3. The rules given by Tableare true. Close
The message conveyed by Corollay is the following. Ifp  or \, on Quit
(a, b), then the monotonicity patterns ohear the endpointsandb (and hence Page 15 of 42
on the entire intervala, b)) are completely determined by the signs of the limits
pla+) andp(b—). (In particular, at that the sign afy’ is no longer relevant. 3.1neq, Pure and Appl. Math. 7(2) Art. 40, 2006
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~

p | gd | plat) | po=) || | 7
>0 >0 >0/
S >0 <0 || <0\,
N[>0 >0 |[>0]
N | >0 <0 <0\
N <0 > >0/~
\‘ <V =0 <V \ On L'Hospital-Type Rules for
/' <0 >0 >0 / Monotonicity
1 <0 <0 <0\, losif Pinelis
Table 5: The content of the blank cells is not needed, and easy to restore.
Title Page
Contents
are exhaustive. Moreover, the four cases are pairwise mutually exclusive —
because(a+) # p(b—) and hence(a+) andp(b—) cannot be simultaneously « dd
zero.) < >
On the other hand, by Corollary.3, if the sign of g¢’ is taken into ac- E—
count, then — ir8 of the 2* = 16 possible cases concerning the signsafy,
g¢9’, p(a+), and p(b—) — one needs to determine only one of the two signs, Close
sign p(a+) or sign p(b—), depending on the case. Quit

Note that lines 1, 4, 6, and 7 of Taldlecorrespond to parts (1), (2), (3), and

(4) of [16, Corollary 1.3], where limits superior or inferior fix) asz | a or
x T b are used in place of the limit&a+) and p(b—) (which latter we now

Page 16 of 42
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Proof of Corollary3.2. If p " or\ then, by Tables, p is (strictly) monotonic
(on(a,b)). Hence, the limit$(a+) andp(b—) exist and differ from each other.
Now the rules of Tablel immediately follow by Lemm&.1 (cf. the proof of
Corollary3.1). O

Proof of Corollary3.3. It suffices to consider only the first line of Tabie so
that it is assumed that 7, g¢ > 0, andp(a+) > 0. By the first line of
Table3, 5 . Hencep(b—) > p(a+) > 0. It remains to refer to the first line
of Table4. O]
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A slightly stronger version of the basic special-case rule for monotonicity men-
tioned in Sectiorl is

Proposition 4.1 ([L5, Proposition 1.1], [L6, Proposition 1.1]). Suppose that
flat) = gla+) =0o0r f(b—) = g(b—) = 0.

1.1f p ~on(a,b), thenr’” > 0and hence " on(a,b).
2. If p\,on(a,b), thenr’ < 0and hence \, on(a,b).

Developments presented in Sectiprovide further insight into this special-
case rule as well. Indeed, in view dl.(), Proposition4.1 can be restated as
follows.

Proposition 4.2. Suppose thaf(a+) = g(a+) = 0 or f(b—) = g(b—) = 0.
1. If p /on(a,b),thens > 0on(a,b).
2. If p\,on(a,b),thenp < 0on(a,b).

To prove Propositiod.2, one may observe that for alle (a, b)

p(y) = hy(y)/19' W),

whereh, (u) = f'(y) g(v)—d'(y) f(u), as defined in the first proof of Lemmaal.
In that proof, it was shown that the functiay) is increasing orfa, y|.

On the other hand, the conditigita+) = g(a+) = 0 implies thath,(a+) =
0. It follows thath,(y) > h,(a+) = 0. Hencep(y) > 0 for all y € (a,b). Now
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(2.1) shows that indeed’ > 0 and hence: ,” on (a,b). The casef(b—) =
g(b—) = 0is similar. The above reasoning is very close to the lines of the proof
of [15, Proposition 1.1].

Whenever it is indeed the case thfdt+) = g(a+) = 0 or f(b—) = g(b—)
= (0, the special-case rules are more convenient, because then one need not
further investigate the behavior of rattaear the endpoints, andb.

The main question in this section is the following: under the same special
condition — f(a+) = g(a+) = 0 or f(b—) = g(b—) = 0, can the derived

general rules given by Tablkebe similarly simplified? On L’HospitaI-Typ'e'RuIes for
Proposition4.3 below shows that the answer to this question is yes. More- A

over, we shall also consider the case whieand ¢ both vanish at an inte- losif Pinelis

rior point of the interval, rather than at one of its endpoints. To obtain these

“derived” special-case rules, we shall again rely mainly on the key lemma, Title Page

Lemma2.1l. We shall also rely here on the “basic” special-case rules given

by Propositiont.1 or, rather, on their re-formulation given by Propositibg. CRIMEE

4« 44
< >

Proposition 4.3. The special-case rules given by Tablare true.

Proof of Propositiort.3. It suffices to consider the first line of Tabfe so that
it is assumed thaf(a+) = g(a+) = 0 andp "\, on (a,b); that is, there Go Back
exists some € (a, b) such thap " on(a,c) andp ~\, on(c, b). The condition

g(a+) = 0 implies thatgg’ > 0 on (a, b). Then, by the second line of Tabe Clos_e
p\.on(c,b). Also, by part (1) of PropositioA.2, 5 > 0 on(a, ¢). Hence, there Quit

exists somel € [c, b] such thaip > 0 on (a,c) U (¢,d) andp < 0 on(d,b). (At Page 19 of 42
that,d = b if p(b—) > 0 (and henceg(c+) > 0), andd € [c,b) if p(b—) < 0.)

Therefore and in view of4.1), v > 0 on (a,c) U (¢,d) andr’ < 0 on (d,b). 3. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006
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endpoint condition | p | r

flat+) = glat+) =0 | /\ | /or N\
flat) =glat) =0 |\ || \or\./~
fb=) =g(b=) =0 | N\ | \or N\
fo=)=gb=)=0 |\, | Sor\.~

Table 6: Derived special rules for monotonicity, wheandg both vanish at an
endpoint.

(a,d) andr N\, on(d,b). Thus, ifd = bthenr / on(a,b); and ifd € [c,b)
thenr "\, on(a,b). ]

In the course of the proof of Propositigh3, a little more was established
than stated in Propositioh.3. Namely, based on the sign ptb—), one can
discriminate between the two alternative monotonicity pattermyofen in the
first line of Table6; similarly, for the other three lines of Tabte Thus, one has
the following.

Proposition 4.4. The special-case rules given by Talslare true.

Let us also consider the case when bftand g vanish at an interior point
of the interval.

Proposition 4.5. Suppose that the following conditions hold:

o —wv<a<b<c<o;
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endpoint condition | p | pla+) | pb-) | r

flat+) = gla+) =0 | 7\ >0 | /
flat) = glat) =0 | N\ <0 || N\
flat) = glat) =0 |\ <0 | N\
flat) = glat) =0 |\ >0 |\
J=)=g(b—)=0 | "\ | <0 \
fo=)=g(b=)=0 | "\, | >0 N
Jb=)=gb=)=0 |\, | =20 /
fo=)=g(b=)=0 |\, | <0 N\

Table 7:Specific derived special-case rules for monotonicity, whandg both vanish
at an endpoint.

e f andy are differentiable functions defined on the &etc) \ {b};

e on each of the interval&:, b) and (b, ¢), the functiong; and ¢’ do not take
on the zero value and do not change their respective signs;

o lmll)f(a:) = lin%g(a:) = 0;

e there exists a finite limip(b) := liHll) p(x) and hence, by 'Hospital’s rule,
the limitr(b) := lin})'r(:c) = p(b), wherer(z) := f(x)/g(z) andp(z) :=

f'(x)/d'(z) for x € (a,c) \ {b}, so that the functions and p are extended
from (a,c) \ {b} to (a,c).

On L'Hospital-Type Rules for
Monotonicity

losif Pinelis

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 21 of 42

J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edum
http://jipam.vu.edu.au/

Then the special-case rules given by Tableoncerning the monotonicity
patterns ofp andr on (a, c) are true.

p | r
% %
N N

N orN o
/N o or N

Table 8:Derived special-case rules for monotonicity, wheandg both vanish at an
interior point.

Proof of Proposition4.5. Lines 1 and 2 of Table3 follow immediately from
Propositiord.1. Line 4 can be deduced from line 3 by the “vertical reflection”,
that is, by replacing’ by — f. It remains to consider line 3. Thus, it is assumed
that there exists sontec (a, ¢) such thap \, on(a, &) andp " on (&, c). One
of the following three cases must occur.
Case 1£ =b. Then, by Propositiod.1, » \, on (a,b) andr " on (b, c), SO
thatr \, " on(a,c).
Case 2 £ € (b,c). Thenp \, on(a,b) (sincep \, on (a,§)). Hence, by
Propositiord.1, one has- \, on (a,b). On the other hand; \, on (b,¢) and
p / on (& c). Hence, by Propositiod.3 (line 2 of Table6), » \, or \_ " on
(b, ¢). It follows thatr \, or\, " on(a,c).
Case 3¢ € (a,b). This case is similar to Case 2, but here one will conclude
thatr " or™\, " on(a,c).

This verifies line 3 of Tablé. O
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Remark 1. Itis easy to see from the proofs of the key lemma and the rules based

on it that, instead of the requirement férand g to be differentiable orta, b) it
would be enough to assume, for instance, only fhand g are continuous and
both have finite right derivative_andg’, (or finite left derivativeg” andg’ )
on(a,b), and then use these one-side derivatives in plagé ahdg’. (Cf. [15,
Remark 1.2].)

One corollary of Remark is as follows.

Corollary 5.1. Take anyc € (a,b), and let f be any convex real function on

(a,b). Then the ratiof (x)/(xz — ¢) switches at most once from decreasing to

increasing wher increases from: to 6. Similarly, this ratio switches at most
once from increasing to decreasing whemcreases frona to c.

Remark 2. Here Corollary5.1 appears as a particular application of Corol-
lary 3.1 (enhanced in accordance with Remdrk However, one could, vice
versa, deduce Corollarg.1 from Corollary 5.1 by “changing the variable”
from z to X := g(z), so thatf(z) = F(X) = f(¢ X)), g(z) = X,
r(z) = F(X)/X,andp(z) = F'(X).

An obvious special case of Corollabyl is:

Corollary 5.2. Take anyc € (a,b), and let f be any convex real function on
(a,b). Letr.(z) := (f(x) — f(c))/(x —¢) forx € (a,b) \ {c}, andr.(c) := k,
wherek is an arbitrary point in the intervalf’ (c), f’ (c)]. Then the ratio.(z)
increases whem increases frona to b.

On L'Hospital-Type Rules for
Monotonicity

losif Pinelis

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 23 of 42

J. Ineq. Pure and Appl. Math. 7(2) Art. 40, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:ipinelis@mtu.edum
http://jipam.vu.edu.au/

Corollary 5.2 is immediate from Propositiod.5 enhanced in accordance
with Remarkl.

Remark 3. This remark complements Remdrkvhich allowed using one-side
derivatives off and g in place of f' and ¢’. However, ifg is differentiable

n (a,b), then the phrase “and do not change their respective signs” in the
assumption § and ¢’ do not take on the zero value and do not change their
respective signs ofu, b)” stated in the beginning of Sectiohis superfluous.

Indeed, ifg is differentiable, then it is continuous and therefore does not change

sign, since it does not take on the zero value. As for the implication
¢’ does not change sign provided thatdoes not take on the zero value

it follows by the intermediate value theorem for the derivative (see eg. |
Theorem 5.16]), as was pointed out il [

Remark 4. Moreover, iff andg are differentiable oria, ) and p is monotonic
on (a,b), thenp and p are continuous ona, b). Indeed, take any € (a,b).
Sincep is monotonic, there exist limits(c—) and p(c+). On the other hand,

the ratio

flx) = fle) _ (f(z) = f(e)/(x = ¢)

g9(x) —glc)  (9(x) —g(e)/(x =)
tends top(c) asx — c. Next, by the Cauchy mean value theorem, this ratio
tends top(c—) asz T cand top(c+) asx | ¢. Thus,p(c—) = p(c) = p(c+),
for eachc € (a,b), so thatp is continuous or{a,b). Now it is seen thap is
continuous as well, singg= (pg — f) sign(g’).
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Remark 5. All the stated rules for monotonicity have natural “non-strict” ana-
logues, with strict inequalities and terms “increasing” and “decreasing” re-
placed by the corresponding non-strict inequalities and terms “non-decreasing”
and “non-increasing”.

Remark 6. Lemma2.1shows that (given the sign g§’) the monotonicity pat-
tern of g is completely determined by the monotonicity pattern. df is readily
seen — especially from the second proof of Lerima— that the relation be-
tween the patterns g and p is reversible, so that, given the monotonicity o

pattern ofg and the sign ofi¢’, the monotonicity pattern gfcan be completely O oy "
restored. That is, each line of TalbBecan be read right-to-left. For instance, if

p /andgg > 0, thenp . Thus, given the sign afy/, the monotonicity pat- josIFPinels

tern of p carries the same amount of information as the monotonicity pattern of

p- Title Page
In contrast, it should now be clear that the relation between the monotonic- Contents

ity patterns ofr and p is not reversible in any reasonable sense. The pattern « N

of p can be anything even if the pattern ofand the sign ofy¢’ are given.
For instance, ifp is positive on(a, b) then, by(2.1), » " on (a,b); at that, p < >
and hencep can be made as “wavy” as desired. To be even more specific, let

(a,b) := (0, 00) OF (—00,0), g(z) := 1/z, andj(z) := 2 +sinz, S0 thatp > 0 Go Back
everywhere. Next, in accordance wfth1), let Close

- x |g/(u)| . Quit
(.1) r(z) = /0 Wp(u) du Page 25 of 42

=142z —cosz, whence
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f(x)=g(z)r(xz) = (14 2x — cosz)/x and
=1—cosxz — xsinz,
x € (—00,0) U (0,00), so thatr, p, and can be extended @&, by continuity.

Thenr” > 0 and hence:  on R, while p is “infinitely wavy” on R, just asp
is; see Figures. and 2.

r(x), p(x)
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Figure 1: Graphs of andp: r, increasing; p, non-monotonic, “infinitely Go Back
wavy". Close
Quit
Remark 7. As was pointed out inl[5] (see Remark 1.21 and Examples 1.2 and Page 26 of 42

1.3 therein), “the waves aof may be thought of as obtained from the waves of
p by a certain kind of delaying and smoothing down procedure.” Here, at least | fe——————————————————
the “smoothing down" part is explicit in view db.1), since the “waves" op http://jipam.vu.edu.au
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p(X), p(X)

Figure 2: The monotonicity pattern @f exactly follows that ofp, and vice
versa, in accordance with Tale Recall that herg(z) = 2 4 sinz > 0 for all
x e R.

are in perfect unison with those pf and hence vice versa. In this connection,
one can also consider the representation

r(c)g(c) + J; p(u)g'(u) du
g(c) + [ g'(u) du

of r on [¢, d], which is (in the case whegy’ > 0) a weighted-average of the
“initial” value r(c) and the values gf on[c, d|.

forx € [¢,d] C (a,b)

r(z) =

As for the waves of being “delayed” relative to the waves pfit should be
assumed that two particles are moving, one along the graplaonél the other
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one along the graph ¢f, left-to-right if g¢’ > 0 and right-to-left ifg¢’ < 0; at

that, the abscissas of the two particles are always staying equal to each other.

Remark 8. One can see that, under certain general conditignsiustbe non-
monotonic on an interval whileis monotonic on it. Indeed, suppose that >

0 on(a,b) andr forms an increasing “half-wave” on an intervét, d| C (a, b);

that is,»” > 0 on (¢,d) andr'(c) = r'(d) = 0. Assume also thaf and g

are twice differentiable onja,b), "(c¢) # 0, andr”(d) # 0. It follows that
r"(c¢) > 0 andr”(d) < 0. Itis easy to check that

p=r+r'v, where v:=g/g;

cf. [16, (1.8), (1.7)]. Then one can see that the condltm’ms) =7r'(d) =0
imply p( ) = r(c) and p(d) = r(d). Moreover,p'(c) = r"(c)v(c) > 0 and
p'(d) =r"(d)v(d) < 0, so thatp is necessarily non-monotonic ¢a d).

See Figure3, where[c, d] := [—7/2,7/2], f(z) := €” sinx, andg(z) :=
so thatr(z) = sinz and p(x) = /2 sin(z + 7/4), for all z € R; cf. [ :
Example 1.2].

Remark 9. The latter example also illustrates a general situation. Indeed, with-
out loss of generalityy > 0. “Changing the variable”z to X := Ing(x), one
hasg(r) = e, so that one may assume thgtr) = ¢* and hencey(z) = 1

for all z. Next, ifr is smooth enough on a finite interval d| then, for any

T > d — ¢, one can extend from the intervallc, d] to a smooth periodic func-
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r(x), p(x)

-m/2 /2

Figure 3:r, increasing; p, non-monotonic.

tion of period7’ on R, so that one has the Fourier series representations

r(z) = Ao+ Z<A" cosnkx + B, sinnkz) and hence

p(r) = Ay + Z V1+n2k? (A, cos(nk(z + 1y,)) + B, sin(nk(z + ¢,)))

for some real sequencésl,) and (B,) and allz € R, wherek := 27 and

Uy = %‘;f’m) Thus, with the variable transformed intaX = In g(z), the

nth harmonic componemt,, cos nkx +B,, sinnkxz ofr has av/1 + n2k? times
smaller amplitude and a phase delayedihy as compared with the amplitude
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and phase of theith harmonic component ¢f, for every naturaln. It also
follows thatp conveys a more powerful signal thamoes, in the sense that

/ p(2)? |dIn |g(z)]| > / r(@)? |dn |g ()]

Remark 10. Note that each monotonicity patternofn Tablesl and 2 does
actually occur, for each set of conditions prand g¢’. Here let us provide a

rather general description of how this can happen, suggested by the weighted-
average representation ofgiven in Remarkl. For instance, consider the first

line of Tablel, where itis assumed that“andgg’ > 0 on(a,b). Suppose here
alsothaty > 0, f = fy+C for some constard’, fy(a+) € R, g(a+) € (0, 00),
pla+) € R, and p(b—) = oo (for example, one can take = 0, b = oo,
g(z) = 14z, andfo(z) = e for all z > 0). LetCy := p(a+) g(a+) — fo(a+).
If C' > Cy, thenp(a+) < r(a+), so that, in view of identityl.1), » < 0 and
hencer *\, in a right neighborhood ofi. Now the first line of Tablé implies
thatr \, or \_ " on(a,b). Moreover, since  andp(b—) = oo, the pattern
r \\ 0N (a, b) would imply that in a left neighborhood éfone hasy > r and
hence, by(1.1), » , which is a contradiction. This leaves the pattern, ~
on (a,b) as the only possibility; that is; \, on (a,c) andr " on (c,b), for
somec € (a,b), so that each of the patterns 7, \, and / does occur for-.
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Borweinet al. [9] showed that the ratio

a® —b"
6.1 -7
(6.1) Tt
x # 0 (extended ta = 0 by continuity), is convex in: € R provided that
(6.2) a>b>c>d>0.

They also determined the valuesqfb, ¢, andd for which ratio ©.1) is log-
convex.

Moreover, it was shown in9] that ratio 6.1) is increasing inc € R under
condition ©.2). Here the monotonicity pattern of rati6.() will be determined
for any positive values of, b, ¢, andd, whether condition.2) holds or not.
Dividing both the numerator and denominator of rattolf by 4*, one may
assume without loss of generality that= 1. Denoting thenc” by y, one
rewrites ratio 6.1) as

68«
(6.3) r(y) = %

fory € (0,1) U (1,00) andr(1) := lim,_, r(y) = 8 — «, wherea :=
6= E—‘; Without loss of generality, it will be assumed that

Inb
Inc

and

6> «a.
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Proposition 6.1. The monotonicity pattern of ratioin (6.3) is given by Tablé,
where the trivial case withh = 0 and 3 = 1 must be excluded.

Case |
La<0,6<1 AN
l.a<0,3>1 || \,/]
M. a>008<1] /~\
Va>0,3>1] /

Table 9: The monotonicity pattern of ratian (6.3).

Note that condition.2) corresponds to the case whén> o > 1, which is
a subcase of Case IV of Taldle

Proof of Propositiors.1. Let f(y) := y° — y* andg(y) := y — 1, so thatf /g
equals the ratio in (6.3). Then

p(y) = f'(y)/dy) =By’ ' —ay*'  and
py) = (BB -1y —ala—1))y* >

Hence,

o (a(a - 1)) 7a
BB
is the only root ofy’ in (0, co) provided thaty(a — 1)3(5 — 1) > 0; otherwise,
¢’ has no root in0, o).
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For each of the Cases | and IV in Talfletwo subcases will be considered.

At that, remember the assumptign> «.

Subcase I.1.a < 0and g < 0, so thate < < 0. Herea(a —1) > 0
andjs(p — 1) > 0. Hence, for ally > 0, one hag'(y) < 0iff y < y. (letting
ys := oo if 5 = 0). Thereforep N\, 0on(0,00) (p \,0on(0,00) if 3 =0). It
follows by Propositiont.5thatr  or ™\, or_ " on (0, 00). Also,r(co—) =0
while r > 0 on (1, c0), so thatr \ in a left neighborhood ofc. Thus,r X\, on
(0,00) in Subcase I.1.

Subcase 1.2 < 0and0 < § < 1, sothate < 0 < 5 < 1 (but (o, ) #
(0,1)). Herep’ < 0andhence \, on(0,c0). Thus, by Propositiod.5, r \
on (0, 00) in Subcase .2 as well.

Case ll.a < 0andfg > 1. Here, forally > 0, one hag'(y) < 0iff y < y..
Therefore,p /" on (0,c0). It follows by Propositio.5thatr  or \ or
../ on(0,00). Also, herer(0+) = r(co—) = oo. Thus,r N\, 0on (0, 00) in
Case Il.

CaselllL.a > 0and( < 1, sothat0 < o < § < 1. Here, for ally >
0, one has'(y) > 0iff y < y.. Therefore,p ™\, on (0,00). It follows
by Propositiond.5thatr " or \, or ,/\, on (0,00). Also, herer(0+) =
r(oco—) = 0andr > 0on(0,c0). Thus,r ,/\, on(0,c0) in Case Ill.
Subcase IV.10 < o < 1andf > 1,sothatd < a < 1 < j§ (but(a, 3) #
(0,1)). Herep’ > 0and hence " on(0,0c0). Thus, by Propositiod.5, »
on (0, 00) in Subcase IV.1.

Subcase IV.2a > 1andpg > 1, so thatl < a < (. Here, for ally > 0,
one hay'(y) < 0iff y < y.. Thereforep \ " on (0,00) (p / on (0, 00) if
a = 1). It follows by Propositiord.5thatr " or ™\, or X\, on (0, cc0). Also,
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herer(0+) = 0 andr > 0 on (0, 00). Thus,r ,” on (0, c0) in Subcase IV.2 as
well. O]

The matter of the convexity of ratid (1) without condition 6.2) is more
complicated and will not be pursued here.

Forz € Randk € {0,1,...}, consider

N
—_

J

8

Sk([E) =

Y

!

[
Il
o

the kth partial sum for the Maclaurin series fef, where0® := 1 and S, := 0.
Forallk € {1,2,...}, one hasS;, = Sy_; andSi(z) > 0if z > 0.

Consider the ratio
Skt

S -—
Sk

on (0,00). Applying Propositiord.1 to this ratiok times and observing that
s1(z) = 1 + x isincreasing inc, one obtains

Proposition 6.2. For eachk € {1,2,...}, one hass;, > 0 and hences;, /' on
(0, 00).

Sinces, = 1 — Sg415¢_1/57, one obtains
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Corollary 6.3. For eachz > 0, the partial sumS;.(x) is strictly log-concave in
ke{l,2,...}.

Corollary6.3also follows from results of{(].

Forz € Randk € {0,1,...}, consider

<'|\>‘
—
8
<.

Ri(x) :=e” — :

J

I
o
.

the kth remainder for the Maclaurin series fef. For allk € {1,2,...}, one
hasR; = Ry;_1 andR;(0) = 0; also,Ry(z) = e* > 0, so thatsign Ry (z) = 1
if x > 0andsign Ry(z) = (—=1)*if 2 < 0.
Consider the ratio
_— Riqq
k - Rk 3

extended fronR \ {0} to R by continuity. Applying Propositiod.5to this ratio
k times and observing thag(z) = 1 — e~* is increasing inc € R, one obtains

Proposition 6.4. For eachk € {0, 1,... }, the ratiory is increasing orR.
Sincer}, = 1 — Ryy1Rx_1/RZ, one has

Corollary 6.5. For eachxz # 0, the remaindet R, (z)| is log-concave irk €

{0,1,...}.
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Following along the lines of the proof of Propositidrb, one can show that
|Ri(z)| is actually strictly log-concave ih € {0,1,...} for each real # 0.
Corollary6.5also follows from results ofl[4, 2(].

Using series expansions based on complex analysis, Becker and Ftabk« [

tained the inequa”ties On L’HospitaI-Typ'e'RuIes for
Monotonicity
4 T UEY Q T losif Pinelis
6.4 — <t (—)<— for € (0,1
(6.4) Tl 2\ ST v €(.1)
as a two-sided rational approximation to the tangent function. This approxi- Title Page
mation is rather tight, since the ratio 01_‘ the upper and lower bounc&ﬂm_is s
2/4 = 1.233.... Moreover, as noted inf], the constant factors andZ in
(6.4) are the best possible ones. 4 dd
Anderson, Vamanamurthy and Vuorineij pbtained another nice inequal- < >
ity:
Go Back
. 3
(6.5) (smx) >cosx for x € (0,7/2), Close
x Quit
whose hyperbolic counterpart, Page 36 of 42
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was implicit in [5].

Here we provide monotonicity properties for appropriate ratios, which imply
inequalities 6.4), (6.5), and 6.6) in a quite elementary way. As will be seen
from our proof, inequalitiesd.4) turn out to be indirectly related witl6(5) and
(6.6).

Let us begin with the monotonicity properties pertaining to inequalities (
and (6.6).

Proposition 6.6. The ratio

()’

COS X
increases from to oo asx increases front to 7 /2.

1

Proof. The cubic root of this ratio is the ratig(x) := M whose

derivative ratiop(z) = 2 cos?® z + 1 cos™*/3 z is increasing inc € (0,7/2). It
remains to refer to the special-case rule for monotonicity (Propositign []

Quite similarly one can prove

Proposition 6.7. The ratio

increases froni to oo asz increases frond to co.

Clearly, inequalities.5) and ©.6) immediately follow from Propositions.6
and6.7, respectively.
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Proposition 6.8. The ratio

xT
2

") Ganra)

increases fron2/7 to 7/4 asx increases frond to 7/2. Hence, one has in-
equalities(6.4) and also the mentioned fact that the constant facfroamdg in
(6.4) are the best possible ones.

Proof. Let f(x) := cot(nz/2) andg(x) := (1 — 2?)/z for x € (0, 1), so that

f/g=r.Let
— () = f'(z) _ Ji(z)
7”‘1<£C> T p( ) - gl(I> - 91($)’

where fi(z) := wsin~?(rz/2) andg,(z) := 2+ 2272, x € (0,1). Consider
also

_~

N _
pP=4g m, P11 =g

fi(z) 2 cost
, and pi(z) == = — — ,
| e (sint)?

271
"lg

—_—

wherex € (0,1) andt := wz/2, so thatp; \, on (0,1), by Propositiorns.6.
Also, j1(0+) = Z — 2 < 0andp;(1-) = = > 0. Hence, by Corollang.2
(Table4, line 3),7 N\, on (0, 1); thatis,p \_ " on (0,1). Next, 5(0+) = 0.

Therefore, by Propositios.4 (Table7, line 7),r " on (0, 1). O]

This proof of Propositios.8 provides a good illustration of the monotonicity

rules developed in Sectiosand4.
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The Pythagoras theorem for the Poincaré model of hyperbolic geometry (see
e.g. [/, Theorem 7.11.1]) states that for any right-angled (geodesic) triangle

with a hypotenuse (of geodesic lengttgnd catheti: andb one has
cosh ¢ = cosh a cosh b.

Proposition 6.9. For the isosceles (with = b) right-angled hyperbolic trian-
gle, the ratioc/a increases from/2 to 2 asa increases front to cc.

Proof. Fora > 0, let f(a) := arccosh(cosh? a) andg(a) := a, so that

¢ fla) f'(a) 2cosha
¢c_J dh — — .
@ = glay @) Andhence pl) = = o

Therefore,p(a) increases from/2 to 2 asa increases frond to co. The same
holds forr(a), by the special-case rule for monotonicity (Propositioly and
I'Hospital’s rules for limits. O
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