Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 5, Issue 3, Article 53, 2004

KANTOROVICH-STANCU TYPE OPERATORS

DAN BĂRBOSU

North University of Baia Mare
Faculty of Sciences
Department of Mathematics
and Computer Science
Victoriei 76, 4800 Baia Mare, ROMANIA.
danbarbosu@yahoo.com
Received 10 November, 2003; accepted 29 April, 2004
Communicated by A.M. Fink

Abstract. Considering two given real parameters α, β which satisfy the condition $0 \leq \alpha \leq \beta$, D.D. Stancu ([11]) constructed and studied the linear positive operators $P_{m}^{(\alpha, \beta)}: C([0,1]) \rightarrow$ $C([0,1])$, defined for any $f \in C([0,1])$ and any $m \in \mathbb{N}$ by

$$
\left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m} p_{m k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) .
$$

In this paper, we are dealing with the Kantorovich form of the above operators. We construct the linear positive operators $K_{m}^{(\alpha, \beta)}: L_{1}([0,1]) \rightarrow C([0,1])$, defined for any $f \in L_{1}([0,1])$ and any $m \in \mathbb{N}$ by

$$
\left(K_{m}^{(\alpha, \beta)} f\right)(x)=(m+\beta+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{\frac{k+\alpha}{m+\beta+1}}^{\frac{k+\alpha+1}{m+\beta+1}} f(s) d s
$$

and we study some approximation properties of the sequence $\left\{K_{m}^{(\alpha, \beta)}\right\}_{m \in \mathbb{N}}$.

Key words and phrases: Linear positive operators, Bernstein operator, Kantorovich operator, Stancu operator, First order modulus of smoothness, Shisha-Mond theorem.
2000 Mathematics Subject Classification. 41A36, 41A25.

1. Preliminaries

Starting with two given real parameters α, β satisfying the conditions $0 \leq \alpha \leq \beta$ in 1968, D.D. Stancu (see [11]) constructed and studied the linear positive operators $P_{m}^{(\alpha, \beta)}: C([0,1]) \rightarrow$ $C([0,1])$ defined for any $f \in C([0,1])$ and any $m \in \mathbb{N}$ by

$$
\begin{equation*}
\left(P_{m}^{(\alpha, \beta)} f\right)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k+\alpha}{m+p}\right) \tag{1.1}
\end{equation*}
$$

where $p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k}$ are the fundamental Bernstein polynomials ([5]).
The operators (1.1) are known in mathematical literature as "the operators of D.D. Stancu" (see ([2])).
Note that for $\alpha=\beta=0$, the operator $P_{m}^{(0,0)}$ is the classical Bernstein operator $B_{m}([5])$.
In 1930, L.V. Kantorovich constructed and studied the linear positive operators $K_{m}: L_{1}([0,1])$ $\rightarrow C([0,1])$ defined for any $f \in L_{1}([0,1])$ and any non-negative integer m by

$$
\begin{equation*}
\left(K_{m} f\right)(x)=(m+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(s) d s \tag{1.2}
\end{equation*}
$$

The operators (1.2) are known as the Kantorovich operators. These operators are obtained from the classical Bernstein operators (1.1), replacing there the value $f(k / m)$ of the approximated function by the integral of f in a neighborhood of k / m.
Following the ideas of L.V. Kantorovich $([7])$, let us consider the operators $K_{m}^{(\alpha, \beta)}: L_{1}([0,1])$ $\rightarrow C([0,1])$, defined for any $f \in C([0,1])$ and any $m \in \mathbb{N}$ by

$$
\begin{equation*}
\left(K_{m}^{(\alpha, \beta)} f\right)(x)=(m+\beta+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{\frac{k+\alpha}{m+\beta+1}}^{\frac{k+\alpha+1}{m+\beta+1}} f(s) d s \tag{1.3}
\end{equation*}
$$

obtained from the Stancu type operators (1.1).
Section 2 provides some interesting approximation properties of operators (1.3), called "Kantorovich-Stancu type operators" because they are obtained starting from the Stancu type operators (1.1) following Kantorovich's ideas (see also G.G. Lorentz [9]).
A convergence theorem for the sequence $\left\{K_{m}^{(\alpha, \beta)} f\right\}_{m \in \mathbb{N}}$ is proved and the rate of convergence under some assumptions on the approximated function f is evaluated.

2. Main Results

Lemma 2.1. The Kantorovich-Stancu type operators (I.3) are linear and positive.
Proof. The assertion follows from definition (1.3).
In what follows we will denote by $e_{k}(s)=s^{k}, k \in \mathbb{N}$, the test functions.
Lemma 2.2. The operators (1.3) verify

$$
\begin{align*}
\left(K_{m}^{(\alpha, \beta)} e_{0}\right)(x) & =1 \tag{2.1}\\
\left(K_{m}^{(\alpha, \beta)} e_{1}\right)(x) & =\frac{m}{m+\beta+1} x+\frac{\alpha}{m+\beta+1}+\frac{m+\beta}{2(m+\beta+1)^{2}} \tag{2.2}\\
\left(K_{m}^{(\alpha, \beta)} e_{2}\right)(x) & =\frac{1}{(m+\beta+1)^{2}}\left\{m^{2} x^{2}+m x(1-x)+\frac{2 \alpha m^{2}}{m+\beta}+\frac{\alpha^{2}(3 m+\beta)}{m+\beta}\right\} \\
& +\frac{1}{(m+\beta+1)^{2}}\{m k+\alpha\}+\frac{1}{3(m+\beta+1)^{2}} \tag{2.3}
\end{align*}
$$

for any $x \in[0,1]$.
Proof. It is well known (see [11]) that the Stancu type operators (1.1) satisfy

$$
\begin{aligned}
& \left(P_{m}^{(\alpha, \beta)} e_{0}\right)(x)=1 \\
& \left(P_{m}^{(\alpha, \beta)} e_{1}\right)(x)=\frac{m}{m+\beta} x+\frac{\alpha}{m+\beta} \\
& \left(P_{m}^{(\alpha, \beta)} e_{2}\right)(x)=\frac{1}{(m+\beta)^{2}}\left\{m^{2} x^{2}+m x(1-x)+2 \frac{\alpha m^{2}}{m+\beta} x+\frac{3 \alpha^{2} m}{m+\beta}\right\}
\end{aligned}
$$

Next we apply the definition (2.1).
Lemma 2.3. The operators (1.3) satisfy

$$
\begin{align*}
K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right)=\frac{(\beta+1)^{2}}{(m+\beta+1)^{2}} x^{2} & +\frac{m}{(m+\beta+1)^{2}} x(1-x) \tag{2.4}\\
& +\frac{m}{(m+\beta+1)^{2}(m+\beta)}\{m+2 \alpha(m-\beta-1)\} x \\
& +\frac{3 \alpha^{2}(3 m+\beta)+(m+\beta)(1-3 m-3 \beta)}{3(m+\beta)(m+\beta+1)^{2}}
\end{align*}
$$

for any $x \in[0,1]$.
Proof. From the linearity of $K_{m}^{(\alpha, \beta)}$, we get

$$
K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right)=\left(K_{m}^{(\alpha, \beta)} e_{2}\right)(x)-2 x K_{m}^{(\alpha, \beta)}\left(e_{1} ; x\right)+x^{2}\left(K_{m}^{(\alpha, \beta)} e_{0}\right)(x)
$$

Next, we apply Lemma 2.2
Theorem 2.4. The sequence $\left\{K_{m}^{(\alpha, \beta)} f\right\}_{m \in N}$ converges to f, uniformly on $[0,1]$, for any $f \in$ $L_{1}([0,1])$.

Proof. Using Lemma 2.3, we get

$$
\lim _{m \rightarrow \infty} K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right)=0
$$

uniformly on $[0,1]$. We can then apply the well known Bohman-Korovkin Theorem (see [6] and [8]) to obtain the desired result.

Next, we deal with the rate of convergence for the sequence $\left\{K_{m}^{(\alpha, \beta)} f\right\}_{m \in \mathbb{N}}$, under some assumptions on the approximated function f. In this sense, the first order modulus of smoothness will be used.

Let us recall that if $I \subseteq \mathbb{R}$ is an interval of the real axis and f is a real valued function defined on I and bounded on this interval, the first order modulus of smoothness for f is the function $\omega_{1}:[0,+\infty) \rightarrow \mathbb{R}$, defined for any $\delta \geq 0$ by

$$
\begin{equation*}
\omega_{1}(f ; \delta)=\sup \left\{\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|: x^{\prime}, x^{\prime \prime} \in I,\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta\right\} \tag{2.5}
\end{equation*}
$$

For more details, see for example [1].
Theorem 2.5. For any $f \in L_{1}([0,1])$, any $\alpha, \beta \geq 0$ satisfying the condition $\alpha \leq \beta$ and each $x \in[0,1]$ the Kantorovich-Stancu type operators (1.3) satisfy

$$
\begin{equation*}
\left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq 2 \omega_{1}\left(f ; \sqrt{\delta_{m}^{(\alpha, \beta)}}(x)\right) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{m}^{(\alpha, \beta)}(x)=K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right) \tag{2.7}
\end{equation*}
$$

Proof. From Lemma 2.2 follows

$$
\begin{equation*}
\left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq(m+\beta+1) \sum_{k=0}^{m+p} \int_{\frac{k+\alpha}{m+\beta+1}}^{\frac{k+\alpha+1}{m+\beta+1}}|f(s)-f(x)| d s \tag{2.8}
\end{equation*}
$$

On the other hand

$$
|f(s)-f(x)| \leq \omega_{1}(f ;|s-x|) \leq\left(1+\delta^{-2}(s-x)^{2}\right) \omega_{1}(f ; \delta) .
$$

For $|s-x|<\delta$, the lost increase is clear. For $|s-x| \geq \delta$, we use the following properties

$$
\omega_{1}(f ; \lambda \delta) \leq(1+\lambda) \omega_{1}(f ; \delta) \leq\left(1+\lambda^{2}\right) \omega_{1}(f ; \delta),
$$

where we choose $\lambda=\delta^{-1} \cdot|s-x|$.
This way, after some elementary transformation, (2.8) implies

$$
\begin{equation*}
\left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq\left\{\left(K_{m}^{(\alpha, \beta)} e_{0}\right)(x)+\delta^{-2} K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right\} \omega_{1}(f ; \delta)\right. \tag{2.9}
\end{equation*}
$$

for any $\delta>0$ and each $x \in[0,1]$.
Using next Lemma 2.2 and Lemma 2.3, from (2.9) one obtains

$$
\begin{equation*}
\left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq\left(1+\delta^{-2} \delta_{m}^{(\alpha, \beta)}(x)\right) \omega_{1}(f ; \delta) \tag{2.10}
\end{equation*}
$$

for any $\delta \geq 0$ and each $x \in[0,1]$.
Taking into account Lemma 2.1, it follows that $\delta_{m}^{(\alpha, \beta)}(x) \geq 0$ for each $x \in[0,1]$. Consequently, we can take $\delta:=\delta_{m}^{(\alpha, \beta)}(x)$ in (2.9), arriving at the desired result.
Theorem 2.6. For any $f \in L_{1}([0,1])$ and any $x \in[0,1]$ the following

$$
\begin{equation*}
\left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq 2 \omega_{1}\left(f ; \sqrt{\delta_{m}^{(\alpha, \beta)}}, 1\right) \tag{2.11}
\end{equation*}
$$

holds, where

$$
\begin{array}{r}
\delta_{m, 1}^{(\alpha, \beta)}=\frac{(\beta+1)^{2}}{(m+\beta+1)^{2}}+\frac{m^{2}(2 \alpha+1)}{(m+\beta)(m+\beta+1)^{2}}+\frac{m}{4(m+\beta+1)^{2}} \tag{2.12}\\
+\frac{3 \alpha^{2}(3 m+\beta)+(m+\beta)(1-3 m-3 \beta)}{3(m+\beta)(m+\beta+1)^{2}}
\end{array}
$$

Proof. For any $x \in[0,1]$, the inequality

$$
K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right) \leq \delta_{m, 1}^{(\alpha, \beta)}
$$

holds. Consequently, applying Theorem 2.5 we get (2.11).
Remark 2.7. Theorem 2.5 gives us the order of local approximation (in each point $x \in[0,1]$), while Theorem 2.6 contains an evaluation for the global order of approximation (in any point $x \in[0,1])$.
Because the maximum of $\delta_{m}^{(\alpha, \beta)}(x)$ from 2.6) depends on the relations between α and β, it follows that it can be refined further.
Taking into account the inclusion $C([0,1]) \subset L_{1}([0,1])$, as consequences of Theorem 2.5 and Theorem 2.6, follows the following two results.
Corollary 2.8. For any $f \in C([0,1])$, any $\alpha, \beta \geq 0$ satisfying the condition $\alpha \leq \beta$ and each $x \in[0,1]$, the inequality (2.6) holds.

Corollary 2.9. For any $f \in C([0,1])$, any $\alpha, \beta \geq 0$ satisfying the condition $\alpha \leq \beta$ and any $x \in[0,1]$, the inequality (2.11) holds.

Further, we estimate the rate of convergence for smooth functions.

Theorem 2.10. For any $f \in C^{1}([0,1])$ and each $x \in[0,1]$ the operators (1.3) verify

$$
\begin{align*}
& \left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \tag{2.13}\\
& \leq\left|f^{\prime}(x)\right| \cdot \left\lvert\, \frac{m+\beta}{2(m+\beta+1)^{2}}-\right.
\end{aligned} \begin{aligned}
(m+\beta+1)^{2} & \beta+1 \\
& +2 \sqrt{2 \delta_{m}^{(\alpha, \beta)}(x)} \omega_{1}\left(f^{\prime} ; \sqrt{\delta_{m}^{(\alpha, \beta)}(x)}\right)
\end{align*}
$$

where $\delta_{m}^{(\alpha, \beta)}(x)$ is given in (2.7).
Proof. Applying a well known result due to O. Shisha and B. Mond (see [10]), it follows that

$$
\begin{align*}
& \left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq|f(x)| \cdot\left|\left(K_{m}^{(\alpha, \beta)} e_{0}\right)(x)-1\right| \tag{2.14}\\
& +\left|f^{\prime}(x)\right| \cdot\left|\left(K_{m}^{(\alpha, \beta)} e_{1}\right)(x)-x\left(K_{m}^{(\alpha, \beta)} e_{0}\right)(x)\right|+\sqrt{K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right)} \\
& \times\left\{\sqrt{\left(K_{m}^{(\alpha, \beta)} e_{0}\right)(x)}+\delta^{-1} \sqrt{K_{m}^{(\alpha, \beta)}\left(\left(e_{1}-x\right)^{2} ; x\right)}\right\} \omega_{1}\left(f^{\prime} ; \delta\right) .
\end{align*}
$$

From (2.14), using Lemma 2.2 and Lemma 2.3, we get

$$
\begin{align*}
\left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq\left|f^{\prime}(x)\right| \cdot \mid & \left.\frac{m+\beta}{(m+\beta+1)^{2}}-\frac{\beta+1}{(m+\beta+1)^{2} x} \right\rvert\, \tag{2.15}\\
& +\sqrt{\delta_{m}^{(\alpha, \beta)}(x)}\left\{1+\delta^{-1} \sqrt{\delta_{m}^{(\alpha, \beta)}(x)}\right\} \omega_{1}\left(f^{\prime} ; \delta\right) .
\end{align*}
$$

Choosing $\delta=\sqrt{\delta_{m}^{(\alpha, \beta)}(x)}$ in 2.15, we arrive at the desired result.
Theorem 2.11. For any $f \in C^{1}([0,1])$ and any $x \in[0,1]$ the operators (1.3) verify

$$
\begin{equation*}
\left|\left(K_{m}^{(\alpha, \beta)} f\right)(x)-f(x)\right| \leq \frac{m+\beta}{(m+\beta+1)^{2}} M_{1}+2 \sqrt{\delta} \omega_{1}\left(f^{\prime} ; \sqrt{\delta}\right) \tag{2.16}
\end{equation*}
$$

where

$$
M_{1}=\max _{x \in[0,1]}\left|f^{\prime}(x)\right|, \quad \delta=\max _{x \in[0,1]} \delta_{m}^{(\alpha, \beta)}(x) .
$$

Proof. The assertion follows from Theorem 2.10
Remark 2.12. Because δ depends on the relation between α and β, 2.16) can be further refined, following the ideas of D.D. Stancu [11, 12].

References

[1] O. AGRATINI, Aproximare prin operatori liniari (Romanian), Presa Universitară Clujeană, ClujNapoca, 2000.
[2] F. ALTOMARE and M. CAMPITI, Korovkin-type Approximation Theory and its Applications, de Gruyter Series Studies in Mathematics, vol. 17, Walter de Gruyter \& Co. Berlin, New-York, 1994.
[3] D. BĂRBOSU, A Voronovskaja type theorem for the operator of D.D. Stancu, Bulletins for Applied \& Computer Mathematics, BAM 1998-C/2000, T.U. Budapest (2002), 175-182.
[4] D. BĂRBOSU, Kantorovich-Schurer operators (to appear in Novi-Sad Journal of Mathematics)
[5] S.N. BERNSTEIN, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow, 13(2) (1912-1913), 1-2.
[6] H. BOHMAN, On approximation of continuous and analytic functions, Ark. Mat., 2 (1952), 43-56.
[7] L.V. KANTOROVICH, Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II, C.R. Acad. URSS (1930), 563-568, 595-600.
[8] P.P. KOROVKIN, On convergence of linear operators in the space of continuous functions (Russian), Dokl. Akad. Nauk. SSSR (N.S.), 90 (1953), 961-964.
[9] G.G. LORENTZ, Bernstein Polynomials, Toronto: Univ. of Toronto Press, 1953.
[10] O. SHISHA AND B. MOND, The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A, 60 (1968), 1196-2000.
[11] D.D. STANCU, Approximation of function by a new class of polynomial operators, Rev. Roum. Math. Pures et Appl., 13(8) (1968), 1173-1194.
[12] D.D. STANCU, Asupra unei generalizări a polinoamelor lui Bernstein (Romanian), Studia Universitatis Babeş-Bolyai, 14(2) (1969), 31-45.
[13] D.D. STANCU, GH. COMAN, O. AGRATINI AND R. TR^IMBIŢAŞ, Analiză Numerică şi Teoria Aproximării, Vol.I (Romanian), Presa Universitară Clujeană, Cluj-Napoca, 2001.

