Journal of Inequalities in Pure and Applied Mathematics

# A REFINEMENT OF JENSEN'S INEQUALITY 

J. ROOIN<br>Department of Mathematics<br>Institute for Advanced Studies in Basic Sciences<br>Zanjan, Iran<br>rooin@iasbs.ac.ir

Received 27 August, 2004; accepted 16 March, 2005
Communicated by C.E.M. Pearce

Abstract. We refine Jensen's inequality as

$$
\varphi\left(\int_{X} f d \mu\right) \leq \int_{Y} \varphi\left(\int_{X} f(x) \omega(x, y) d \mu(x)\right) d \lambda(y) \leq \int_{X}(\varphi \circ f) d \mu
$$

where $(X, \mathcal{A}, \mu)$ and $(Y, \mathcal{B}, \lambda)$ are two probability measure spaces, $\omega: X \times Y \rightarrow[0, \infty)$ is a weight function on $X \times Y, I$ is an interval of the real line, $f \in L^{1}(\mu), f(x) \in I$ for all $x \in X$ and $\varphi$ is a real-valued convex function on $I$.

Key words and phrases: Product measure, Fubini's Theorem, Jensen's inequality.
2000 Mathematics Subject Classification. Primary: 26D15, 28 A35.

## 1. Introduction

The classical integral form of Jensen's inequality states that

$$
\begin{equation*}
\varphi\left(\int_{X} f d \mu\right) \leq \int_{X}(\varphi \circ f) d \mu \tag{1.1}
\end{equation*}
$$

where $(X, \mathcal{A}, \mu)$ is a probability measure space, $I$ is an interval of the real line, $f \in L^{1}(\mu)$, $f(x) \in I$ for all $x \in X$ and $\varphi$ is a real-valued convex function on $I$; see e.g. [2, p. 202] or [4, p. 62]. Now suppose that $(X, \mathcal{A}, \mu)$ and $(Y, \mathcal{B}, \lambda)$ are two probability measure spaces. By a (separately) weight function on $X \times Y$ we mean a product- measurable mapping $\omega: X \times Y \rightarrow$ $[0, \infty)$, see e.g. [4], p. 160], such that

$$
\begin{equation*}
\int_{X} \omega(x, y) d \mu(x)=1(\text { for each } y \text { in } Y) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{Y} \omega(x, y) d \lambda(y)=1(\text { for each } x \text { in } X) . \tag{1.3}
\end{equation*}
$$

[^0]For example, if we take $X$ and $Y$ as the unit interval $[0,1]$ with Lebesgue measure, then $\omega(x, y)=1+(\sin 2 \pi x)(\sin 2 \pi y)$ is a weight function on $[0,1] \times[0,1]$.

In this paper, using a weight function $\omega$, we refine Jensen's inequality (1.1) as in the following section. For some applications in the discrete case, see e.g. [3].

## 2. Refinement

In this section, using the terminologies of the introduction, we refine the integral form of Jensen's inequality (1.1) via a weight function $\omega$.

Theorem 2.1. Let $(X, \mathcal{A}, \mu)$ and $(Y, \mathcal{B}, \lambda)$ be two probability measure spaces and $\omega: X \times Y \rightarrow$ $[0, \infty)$ be a weight function on $X \times Y$. If I is an interval of the real line, $f \in L^{1}(\mu), f(x) \in I$ for all $x \in X$, and $\varphi$ is a real convex function on $I$, then

$$
\int_{Y} \varphi\left(\int_{X} f(x) \omega(x, y) d \mu(x)\right) d \lambda(y)
$$

has meaning and we have

$$
\begin{equation*}
\varphi\left(\int_{X} f d \mu\right) \leq \int_{Y} \varphi\left(\int_{X} f(x) \omega(x, y) d \mu(x)\right) d \lambda(y) \leq \int_{X}(\varphi \circ f) d \mu \tag{2.1}
\end{equation*}
$$

Proof. The functions $\omega$ and $(x, y) \rightarrow f(x)$, and so

$$
(x, y) \rightarrow f(x) \omega(x, y)
$$

is product-measurable on $X \times Y$. Now since

$$
\begin{align*}
& \int_{X} \int_{Y}|f(x)| \omega(x, y) d \lambda(y) d \mu(x)  \tag{2.2}\\
&=\int_{X}|f(x)|\left(\int_{Y} \omega(x, y) d \lambda(y)\right) d \mu(x) \\
&=\int_{X}|f(x)| d \mu(x)=\|f\|_{L^{1}(\mu)}<\infty,
\end{align*}
$$

by Fubini's theorem, the real-valued function $(x, y) \rightarrow f(x) \omega(x, y)$ on $X \times Y$ belongs to $L^{1}(\mu \times \lambda)$. Therefore for $\lambda$-almost all $y \in Y$, the function $x \rightarrow f(x) \omega(x, y)$ belongs to $L^{1}(\mu)$. Fix an arbitrary $\alpha \in I$. Define $F: Y \rightarrow \mathbb{R}$, by

$$
F(y)=\int_{X} f(x) \omega(x, y) d \mu(x)
$$

if the integral exists, and $F(y)=\alpha$ otherwise. By Fubini's theorem, we have $F \in L^{1}(\lambda)$. It is easy to show that $F(y) \in I(y \in Y)$. So,

$$
\int_{Y} \varphi\left(\int_{X} f(x) \omega(x, y) d \mu(x)\right) d \lambda(y):=\int_{Y}(\varphi \circ F)(y) d \lambda(y)
$$

has meaning and is an extended real number belonging to $(-\infty,+\infty$ ]; see e.g. [4], p. 62]. Now, since $(x, y) \rightarrow f(x) \omega(x, y)$ belongs to $L^{1}(\mu \times \lambda)$, by 1.1 and Fubini's theorem, we have

$$
\begin{aligned}
\int_{Y} \varphi\left(\int_{X} f(x) \omega(x, y) d \mu(x)\right) d \lambda(y) & =\int_{Y}(\varphi \circ F)(y) d \lambda(y) \\
& \geq \varphi\left(\int_{Y} F(y) d \lambda(y)\right) \\
& =\varphi\left(\int_{Y} \int_{X} f(x) \omega(x, y) d \mu(x) d \lambda(y)\right) \\
& =\varphi\left(\int_{X} f(x)\left(\int_{Y} \omega(x, y) d \lambda(y)\right) d \mu(x)\right) \\
& =\varphi\left(\int_{X} f d \mu\right),
\end{aligned}
$$

and the left-hand side inequality (2.1) is obtained.
For the right-hand side inequality in 2.1 , we consider two cases: If $\int_{X}(\varphi \circ f) d \mu=+\infty$, the assertion is trivial. Suppose then, $\varphi \circ f \in L^{1}(\mu)$. Take an arbitrary $y \in Y$ such that $x \rightarrow f(x) \omega(x, y)$ belongs to $L^{1}(\mu)$, and put

$$
d \nu^{y}=\omega^{y} d \mu
$$

where

$$
\omega^{y}(x)=\omega(x, y) \quad(x \in X)
$$

Trivially, $\left(X, \mathcal{A}, \nu^{y}\right)$ is a probability measure space, $f \in L^{1}\left(\nu^{y}\right)$ and

$$
F(y)=\int_{X} f(x) \omega(x, y) d \mu(x)=\int_{X} f(x) d \nu^{y}(x)
$$

Thus, by Jensen's inequality (1.1), we have

$$
\begin{equation*}
(\varphi \circ F)(y)=\varphi\left(\int_{X} f(x) d \nu^{y}(x)\right) \leq \int_{X}(\varphi \circ f) d \nu^{y} \tag{2.3}
\end{equation*}
$$

Since $\varphi \circ f \in L^{1}(\mu)$,

$$
\begin{align*}
\int_{X} \int_{Y} \mid(\varphi \circ f) & (x) \mid \omega(x, y) d \lambda(y) d \mu(x) \\
& =\int_{X}|(\varphi \circ f)(x)| d \mu(x) \int_{Y} \omega(x, y) d \lambda(y)  \tag{2.4}\\
& =\int_{X}|(\varphi \circ f)(x)| d \mu(x)<\infty
\end{align*}
$$

and so for $\lambda$-almost all $y \in Y$, the function $x \rightarrow(\varphi \circ f)(x) \omega(x, y)$ belongs to $L^{1}(\mu)$ and for these $y$ 's, we have

$$
\begin{equation*}
\int_{X}(\varphi \circ f)(x) \omega(x, y) d \mu(x)=\int_{X}(\varphi \circ f)(x) d \nu^{y}(x) \tag{2.5}
\end{equation*}
$$

Thus, by (2.3) and (2.5), for $\lambda$-almost all $y \in Y$

$$
\begin{equation*}
(\varphi \circ F)(y) \leq \int_{X}(\varphi \circ f)(x) \omega(x, y) d \mu(x) \tag{2.6}
\end{equation*}
$$

Denote temporarily the right-hand side of (2.6) by $\psi(y)$ (put $\psi(y)=0$, if the integral does not exist). Since by (2.4), $\psi \in L^{1}(\lambda)$, from $(\varphi \circ F)^{+} \leq \psi^{+}(\lambda$-a.e. $)$, we conclude that $\int_{Y}(\varphi \circ$ $F)^{+} d \lambda \leq \int_{Y} \psi^{+} d \lambda<\infty$.

On the other hand, we know that $\int_{Y}(\varphi \circ F)^{-} d \lambda<\infty$. Thus $\varphi \circ F \in L^{1}(\lambda)$, and so by 2.6, (2.4) and Fubini's theorem,

$$
\begin{aligned}
\int_{Y} \varphi\left(\int_{X} f(x) \omega(x, y) d \mu(x)\right) d \lambda(y) & =\int_{Y}(\varphi \circ F)(y) d \lambda(y) \\
& \leq \int_{Y} \psi(y) d \lambda(y) \\
& =\int_{Y} \int_{X}(\varphi \circ f)(x) \omega(x, y) d \mu(x) d \lambda(y) \\
& =\int_{X}(\varphi \circ f)(x) d \mu(x) \int_{Y} \omega(x, y) d \lambda(y) \\
& =\int_{X}(\varphi \circ f) d \mu
\end{aligned}
$$

This completes the proof.
Corollary 2.2. If $\varphi$ is a real convex function on a closed interval $[a, b]$, then we have HermiteHadamard inequalities [1]:

$$
\begin{equation*}
\varphi\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} \varphi(t) d t \leq \frac{\varphi(a)+\varphi(b)}{2} \tag{2.7}
\end{equation*}
$$

Proof. Put $X=\{0,1\}$ with $\mathcal{A}=2^{X}$ and $\mu\{0\}=\mu\{1\}=\frac{1}{2}$, and $Y=[0,1]$ with Lebesgue measure $\lambda$. Now, 2.7) follows from (2.1) by taking $\omega(0, y)=2(1-y), \omega(1, y)=2 y(0 \leq$ $y \leq 1), I=[a, b], f(0)=a, f(1)=b$, and considering the change of variables $t=(1-y) a+$ $y b$.

We conclude this paper by the following open problem:
Open problem. Characterize all weight functions. Actually, if $\omega(x, y)$ is a weight function, then $\theta(x, y)=\omega(x, y)-1$ satisfies the following relations:

$$
\begin{align*}
& \int_{X} \theta(x, y) d \mu(x)=0(\text { for each } y \text { in } Y),  \tag{2.8}\\
& \int_{Y} \theta(x, y) d \lambda(y)=0(\text { for each } x \text { in } X) \tag{2.9}
\end{align*}
$$

So precisely, the weight functions are of the form $1+\theta(x, y)$ with nonnegative values such that $\theta(x, y)$ is product-measurable and satisfies 2.8 and 2.9 . Therefore, it is sufficient only to characterize these $\theta$ 's.

## References

[1] S.S. DRAGOMIR AND C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [ONLINE: http://rgmia.vu. edu.au/monographs/]
[2] E. HEWITT AND K. STROMBERG, Real and Abstract Analysis, Springer-Verlag, New York, 1965.
[3] J. ROOIN, Some aspects of convex functions and their applications, J. Ineq. Pure and Appl. Math., 2(1) (2001), Art. 4. [ONLINE http://jipam.vu.edu.au/article.php?sid=120]
[4] W. RUDIN, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1974.


[^0]:    ISSN (electronic): 1443-5756
    (c) 2005 Victoria University. All rights reserved.

    160-04

