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ABSTRACT. We obtain a new proof of a generalization of a double inequality on the Euler
gamma function, obtained by C. Alsina and M. S. Tomas [1].
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1. INTRODUCTION

The Euler Gamma functiohi is defined forz > 0 by

F(x):/ e~ dt.
0

By using a geometrical method, recently C. Alsina and M. S. Tomas [1] have proved the
following double inequality:

Theorem 1.1.For all = € [0, 1], and all nonnegative integersone has

1 < (14 )"
n! = I'(14+nx) —

While the interesting method of[1] is geometrical, we will show in what follows that, by
certain simple analytical arguments it can be proved fhat (1.1) holds true for all real numbers
and allz € [0, 1]. In fact, this will be a consequence of a monotonicity property.

Lety(x) = FF/((;) (x > 0) be the "digamma function". For properties of this function, as well
as inequalities, or representation theorems, seele.gl [2], [4]L.]5], [7]. Seé also [3] and [6] for a

survey of results on the gamma and related functions.

(1.1)
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2. MAIN RESULTS

Our method is based on the following auxiliary result:

Lemma 2.1. For all z > 0 one has the series representation

(2.1) Y(x) = =7 + x—1;k+1 CETL

This is well-known. For proofs, see e.qg! [4]] [7].
Lemma 2.2. Forall x > 0, and alla > 1 one has
(2.2) (1 +ax) > (1 +x).
Proof. By (2.1) we can write)(1 + az) > ¢(1 + z) iff

1 1
_fHaxZ (k+1)(1+ax+k) ~ _WﬂZ k+1)(1+a+k)

Now, remark that

a 1 a—1
G0 tarsh) GeD(+eth) (tethitarth) ="

bya > 1,z > 0, k > 0. Thus inequality[(2]2) is proved. There is equality onlydo= 1. O

We notice that[(2]2) trivially holds true far = 0 for all a.
Theorem 2.3.For all a > 1, the function

I'(1+2)*

1) = F i an)

is a decreasing function aof > 0.
Proof. Let
g(x) =log f(x) = alog(1 + x) — log (1 + ax).
Since
g'(z) = alp(1 + z) — ¢(1 + az)],

by Lemmd 2.2 we gef/(z) < 0, sog is decreasing. This implies the required monotonicity of
f O

Corollary 2.4. Forall a > 1 and allz € [0,1] one has

1 I(z+1)a
T1+a) = T(az + 1)

Proof. For z € (0, 1], by Theorenj 2]3/(1) < f(z) < f(0), which byI'(1) = I'(2) = 1
implies [2.3). Fow = n > 1 integer, this yields relation (1.1). O

(2.3) <1,
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