Journal of Inequalities in Pure and Applied Mathematics

AN INTEGRAL INEQUALITY SIMILAR TO QI'S INEQUALITY
 LAZHAR BOUGOFFA

Department of Mathematics Faculty of Science King Khalid University
P.O. Box 9004, Abha, Saudi Arabia
abogafah@kku.edu.sa
Received 15 August, 2004; accepted 18 February, 2005
Communicated by F. Qi

Abstract

In this note, as a complement of an open problem by F. Qi in the paper [Several integral inequalities, J. Inequal. Pure Appl. Math. 1 (2002), no. 2, Art. 54. http://jipam. vu.edu.au/article.php?sid=113 RGMIA Res. Rep. Coll. 2 (1999), no. 7, Art. 9, 1039-1042. http://rgmia.vu.edu.au/v2n7.html], a similar problem is posed and an affirmative answer to it is established.

Key words and phrases: Hölder's inequality, Qi's inequality, Integral inequality.
2000 Mathematics Subject Classification. Primary: 26D15.
The following problem was posed by F. Qi in his paper [6]:
Problem 1. Under what conditions does the inequality

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{t} d x \geq\left(\int_{a}^{b} f(x) d x\right)^{t-1} \tag{1}
\end{equation*}
$$

hold for $t>1$?
This problem has attracted much attention from some mathematicians [5]. Its meanings of probability and statistics is found in [2]. See also [1, 3, 4] and the references therein.

Similar to Problem 1, we propose the following
Problem 2. Under what conditions does the inequality

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{t} d x \leq\left(\int_{a}^{b} f(x) d x\right)^{1-t} \tag{2}
\end{equation*}
$$

hold for $t<1$?
Before giving an affirmative answer to Problem 2, we establish the following

ISSN (electronic): 1443-5756

(c) 2005 Victoria University. All rights reserved.

161-04

Proposition 1. Let f and g be nonnegative functions with $0<m \leq f(x) / g(x) \leq M<\infty$ on $[a, b]$. Then for $p>1$ and $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ we have

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} d x \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}} \int_{a}^{b}[f(x)]^{\frac{1}{q}}[g(x)]^{\frac{1}{p}} d x \tag{3}
\end{equation*}
$$

and then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} d x \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}}\left(\int_{a}^{b} f(x) d x\right)^{\frac{1}{q}}\left(\int_{a}^{b} g(x) d x\right)^{\frac{1}{p}} \tag{4}
\end{equation*}
$$

Proof. From Hölder's inequality, we obtain

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} d x \leq\left(\int_{a}^{b} f(x) d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} g(x) d x\right)^{\frac{1}{q}} \tag{5}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} d x \leq\left(\int_{a}^{b}[f(x)]^{\frac{1}{p}}[f(x)]^{\frac{1}{q}} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}[g(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} d x\right)^{\frac{1}{q}} \tag{6}
\end{equation*}
$$

Since $[f(x)]^{\frac{1}{p}} \leq M^{\frac{1}{p}}[g(x)]^{\frac{1}{p}}$ and $[g(x)]^{\frac{1}{q}} \leq m^{-\frac{1}{q}}[f(x)]^{\frac{1}{q}}$, from the above inequality it follows that

$$
\begin{align*}
& \int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} d x \tag{7}\\
& \quad \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}}\left(\int_{a}^{b}[f(x)]^{\frac{1}{q}}[g(x)]^{\frac{1}{p}} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}[f(x)]^{\frac{1}{q}}[g(x)]^{\frac{1}{p}} d x\right)^{\frac{1}{q}},
\end{align*}
$$

that is

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} d x \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}} \int_{a}^{b}[f(x)]^{\frac{1}{q}}[g(x)]^{\frac{1}{p}} d x . \tag{8}
\end{equation*}
$$

Hence, the inequality (3) is proved.
The inequality (4) follows from substituting the following

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{q}}[g(x)]^{\frac{1}{p}} d x \leq\left(\int_{a}^{b} f(x) d x\right)^{\frac{1}{q}}\left(\int_{a}^{b} g(x) d x\right)^{\frac{1}{p}} \tag{9}
\end{equation*}
$$

into (8), which can be obtained by Hölder's inequality.
Now we are in a position to give an affirmative answer to Problem 2 as follows.
Proposition 2. For a given positive integer $p \geq 2$, if $0<m \leq f(x) \leq M$ on $[a, b]$ with $M \leq m^{(p-1)^{2}} /(b-a)^{p}$, then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}} d x \leq\left(\int_{a}^{b} f(x) d x\right)^{1-\frac{1}{p}} \tag{10}
\end{equation*}
$$

Proof. Putting $g(x) \equiv 1$ into (4) yields

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}} d x \leq K\left(\int_{a}^{b} f(x) d x\right)^{1-\frac{1}{p}} \tag{11}
\end{equation*}
$$

where $K=M^{\frac{1}{p^{2}}}(b-a)^{\frac{1}{p}} / m^{\left(1-\frac{1}{p}\right)^{2}}$.

From $M \leq m^{(p-1)^{2}} /(b-a)^{p}$, we conclude that $K \leq 1$. Thus the inequality (10) is proved.

Remark 3. Now we discuss a simple case of "equality" in Proposition 2. If we make the substitution $f(x)=M=m$ and $b-a=1$ with $p=2$, then the equality in (10) holds.

In order to illustrate a possible practical use of Proposition 2, we shall give in the following two simple examples in which we can apply inequality (10).

Example 1. Let $f(x)=8 x^{2}$ on $[1 / 2,1]$ with $M=8$ and $m=2$. Taking $p=2$, we see that the conditions of Proposition 2 are fulfilled and straightforward computation yields

$$
\int_{1 / 2}^{1}\left(8 x^{2}\right)^{1 / 2} d x=\frac{3}{4} \sqrt{2}<\left(\int_{1 / 2}^{1} 8 x^{2} d x\right)^{\frac{1}{2}}=\frac{\sqrt{7}}{\sqrt{3}} .
$$

Example 2. Let $f(x)=e^{x}$ on $[1,2]$ with $M=e^{2}$ and $m=e$.
Taking $p=3$, all the conditions of Proposition 2 are satisfied and direct calculation produces

$$
\int_{1}^{2}\left(e^{x}\right)^{1 / 3} d x=3\left(e^{2 / 3}-e^{1 / 3}\right) \approx 1.65<\left(\int_{1}^{2} e^{x} d x\right)^{\frac{2}{3}}=\left(e^{2}-e\right)^{2 / 3} \approx 2.78
$$

References

[1] L. BOUGOFFA, Notes on Qi type inequalities, J. Inequal. Pure and Appl. Math., 44(4) (2003), Art. 77. Available online athttp://jipam.vu.edu.au/article.php?sid=318
[2] V. CSISZAR and T.F. MÓRI, The convexity method of proving moment-type inequalities, Statist. Probab. Lett., 66 (2004), 303-313.
[3] S. MAZOUZI and F. QI, On an open problem regarding an integral inequality, J. Inequal. Pure Appl. Math., 4(2) (2003), Art. 31. Available online at http://jipam.vu.edu.au/article. php?sid=269
[4] J. PEČARIĆ AND T. PEJKOVIĆ, Note on Feng Qi's integral inequality, J. Inequal. Pure Appl. Math., 5(3) (2004), Art. 51. Available online at http://jipam.vu.edu.au/article.php?sid= 418.
[5] T.K. POGÁNY, On an open problem of F. Qi, J. Inequal. Pure Appl. Math., 3(4) (2002), Art. 54. Available online at http://jipam.vu.edu.au/article.php?sid=206
[6] F. QI, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2) (2002), Art. 54. Available online at http://jipam.vu.edu.au/article.php?sid=113. RGMIA Res. Rep. Coll., 2(7) (1999), Art. 9, 1039-1042. Available online at http://rgmia.vu.edu.au/v2n7.html

