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Abstract

The object of the present paper is to give applications of the Nunokawa Theo-
rem [Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 234-237]. Our results
have some interesting examples as special cases .
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1. Introduction
LetA be the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

which are analytic in the open unit diskU = {z : |z| < 1}. It is known that the
class

(1.2) B(µ) =

{
f(z) ∈ A : Re

{
f ′(z)

{
f(z)

z

}µ−1
}

> 0, µ > 0, z ∈ U

}
is the class of univalent functions inU ([3]).

To derive our main theorem, we need the following lemma due to Nunokawa
[2].

Lemma 1.1. Letp(z) be analytic inU , with p(0) = 1 andp(z) 6= 0 (z ∈ U). If
there exists a pointz0 ∈ U, such that

|arg p(z)| < π

2
α for |z| < |z0|

and
|arg p(z0)| =

π

2
α (α > 0),

then we have
z0p

′(z0)

p(z0)
= ikα,

wherek ≥ 1 whenarg p(z0) = π
2
α andk ≤ −1 whenarg p(z0) = −π

2
α
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In [1] , Miller and Mocanu proved the following theorem.

Theorem A. Letβ0 = 1.21872..., be the solution of

βπ =
3

2
π − tan−1 β

and let

α = α(β) = β +
2

π
tan−1 β

for 0 < β < β0.

If p(z) is analytic inU , with p(0) = 1, then

p(z) + zp′(z) ≺
(

1 + z

1− z

)α

⇒ p(z) ≺
(

1 + z

1− z

)β

or
|arg (p(z) + zp′(z))| < π

2
α ⇒ |arg p(z)| < π

2
β.

Corresponding to TheoremA, we will obtain a result which is useful in
obtaining applications of analytic function theory.
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2. Main Results
Now we derive:

Theorem 2.1. Let p(z) be analytic inU , with p(0) = 1 andp(z) 6= 0 (z ∈ U)
and suppose that

|arg (p(z) + βzp′(z))| < π

2

(
α +

2

π
tan−1 βα

)
(α > 0, β > 0),

then we have
|arg p(z)| < π

2
α for z ∈ U.

Proof. If there exists a pointz0 ∈ U, such that

|arg p(z)| < π

2
α for |z| < |z0|

and
|arg p(z0)| =

π

2
α (α > 0),

then from Lemma1.1, we have
(i) for the casearg p(z0) = π

2
α,

arg (p(z) + βz0p
′(z0)) = arg p(z0)

{
1 + β

z0p
′(z0)

p(z0)

}
=

π

2
α + arg (1 + iβαk) ≥ π

2
α + tan−1 βα.

This contradicts our condition in the theorem.
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(ii) for the casearg p(z0) = −π
2
α, the application of the same method as in (i)

shows that

arg (p(z) + βz0p
′(z0)) ≤ −

(π

2
α + tan−1 βα

)
.

This also contradicts the assumption of the theorem, hence the theorem is proved.

Makingp(z) = f ′(z) for f(z) ∈ A in Theorem2.1, we have

Example 2.1. If f(z) ∈ A satisfies

|arg (f ′(z) + βzf ′′(z))| < π

2

(
α +

2

π
tan−1 βα

)
then we have

|arg f ′(z)| < π

2
α ,

where α > 0, β > 0 andz ∈ U .

Further, takingp(z) = f(z)
z

for f(z) ∈ A in Theorem2.1, we have

Example 2.2. If f(z) ∈ A satisfies∣∣∣∣arg{(1− β)
f(z)

z
+ βf ′(z)}

∣∣∣∣ <
π

2

(
α +

2

π
tan−1 βα

)
,

then we have ∣∣∣∣arg
f(z)

z

∣∣∣∣ <
π

2
α ,

where α > 0, 0 < β ≤ 1 andz ∈ U .
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Theorem 2.2. If f(z) ∈ A satisfies∣∣∣∣∣arg f ′(z)

{
f(z)

z

}µ−1
∣∣∣∣∣ <

π

2

(
α +

2

π
tan−1 α

µ

)
,

then we have ∣∣∣∣arg

{
f(z)

z

}µ∣∣∣∣ <
π

2
α,

where α > 0, µ > 0 andz ∈ U .

Proof. Let p(z) =
{

f(z)
z

}µ

, µ > 0, then we have

p(z) +
1

µ
zp′(z) = f ′(z)

{
f(z)

z

}µ−1

and the statements of the theorem directly follow from Theorem2.1.

Theorem 2.3.Letµ > 0 , c + µ > 0 andα > 0. If f(z) ∈ A satisfies∣∣∣∣∣arg f ′(z)

{
f(z)

z

}µ−1
∣∣∣∣∣ <

π

2

(
α +

2

π
tan−1 α

µ + c

)
, (z ∈ U)

thenF (z) = [Iµ,c(f)](z) defined by

Iµ,cf(z) =

[
µ + c

zc

∫ z

0

fµ(t)tc−1dt

] 1
µ

, ([Iµ,c(f)](z)/z 6= 0 in U)
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satisfies ∣∣∣∣∣arg F ′(z)

{
F (z)

z

}µ−1
∣∣∣∣∣ <

π

2
α.

Proof. Consider the functionp defined by

p(z) = F ′(z)

{
F (z)

z

}µ−1

(z ∈ U).

Then we easily see that

p(z) +
1

µ + c
zp′(z) = f ′(z)

{
f(z)

z

}µ−1

,

and the statements of the theorem directly follow from Theorem2.1.

Theorem 2.4.Let a functionf(z) ∈ A satisfy the following inequalities

(2.1)

∣∣∣∣∣arg f ′(z)

{
z

f(z)

}µ+1
∣∣∣∣∣ <

π

2

(
−α +

2

π
tan−1 α

µ

)
, (z ∈ U)

for someα (0 < α ≤ 1), (0 < µ < 1). Then∣∣∣∣arg

{
f(z)

z

}µ∣∣∣∣ <
π

2
α .
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Proof. Let us define the functionp(z) by p(z) =
(

f(z)
z

)µ

, (0 < µ < 1). Then

p(z) satisfies

f ′(z)

{
z

f(z)

}µ+1

=
1

p(z)

(
1 +

1

µ

zp′(z)

p(z)

)
.

If there exists a pointz0 ∈ U, such that

|arg p(z)| < π

2
α for |z| < |z0|

and
|arg p(z0)| =

π

2
α,

then from Lemma1.1, we have:
(i) for the casearg p(z0) = π

2
α,

arg f ′(z0)

{
z

f(z0)

}µ+1

= arg

{
1

p(z0)

(
1 +

1

µ

zp′(z0)

p(z0)

)}
= −π

2
α + arg

(
1 +

iαk

µ

)
≥ −π

2
α + tan−1 α

µ
.

This contradicts our condition in the theorem.
(ii) for the casearg p(z0) = −π

2
α, the application of the same method as in (i)

shows that

arg f ′(z0)

{
z

f(z0)

}µ+1

≤ −
(
−π

2
α + tan−1 α

µ

)
.
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This also contradicts the assumption of the theorem, hence the theorem is proved.

Theorem 2.5.Letf(z) ∈ A satisfy the condition (2.1) and let

(2.2) F (z) =

[
c− µ

zc−µ

∫ z

0

{
t

f(t)

}µ

dt

]− 1
µ

,

wherec− µ > 0. Then∣∣∣∣∣arg F ′(z)

{
z

F (z)

}µ+1
∣∣∣∣∣ <

π

2
α.

Proof. If we put

p(z) = F ′(z)

{
z

F (z)

}µ+1

,

then from (2.2) we have

p(z) +
1

c− µ
zp′(z) = f ′(z)

{
z

f(z)

}µ+1

.

The statements of the theorem then directly follow from Theorem2.1.
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