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ABSTRACT. Chebyshev’s integral inequality, also known as the covariance inequality, is an im-
portant problem in economics, finance, and decision making. In this paper we derive some
covariance inequalities for monotonic and non-monotonic functions. The results developed in
our paper could be useful in many applications in economics, finance, and decision making.
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1. I NTRODUCTION

Chebyshev’s integral inequality is widely used in applied mathematics in areas such as: eco-
nomics, finance, and decision making under risk, see, for example, Wagener [8] and Athey [1].
It can also be used to study the covariance sign of two monotonic functions, see Mitrinovic,
Pěcaríc and Fink [6] and Wagener [8].

However, monotonicity is a very strong assumption that can only sometimes be satisfied.
Cuadras in [2] gave a general identity for the covariance between functions of two random vari-
ables in terms of their cumulative distribution functions. In this paper, using the Cuadras iden-
tity, we derive some integral inequalities for monotonic functions and some for non-monotonic
functions.
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2. THEORY

We first present Chebyshev’s algebraic inequality, see, for example, Mitrinovic, Pečaríc and
Fink [6], as follows:

Proposition 2.1. Let α, β : [a, b] → R and f(x) : [a, b] → R+, whereR is the set of real
numbers. We have

(1) if α andβ are both increasing or both decreasing, then

(2.1)
∫ b

a

f(x)

∫ b

a

α(x)β(x)f(x) dx ≥
∫ b

a

α(x)f(x) dx×
∫ b

a

β(x)f(x) dx ;

(2) if one is increasing and the other is decreasing, then the inequality is reversed.

We note that in Proposition 2.1, iff(x) is a probability density function, then Chebyshev’s
algebraic inequality in (2.1) becomes

Cov
[
α(X), β(X)

]
≥ 0 .

Cuadras [2] extended the work of Hoeffding [3], Mardia [4], Sen [7], and Lehmann [5] by
proving that for any two real functions of bounded variationα(x) andβ(x) defined on[a, b]
and[c, d], respectively, and for any two random variablesX andY such thatE

[
|α(X)β(Y )|

]
,

E
[
|α(X)|

]
, andE

[
|β(Y )|

]
are finite,

(2.2) Cov
[
α(X), β(Y )

]
=

∫ d

c

∫ b

a

[H(x, y)− F (x)G(y)] dα(y) dβ(x) ,

whereH(x, y) is the joint cumulative distribution function forX andY , andF andG are the
corresponding cumulative distribution functions ofX andY , respectively.

As we noted before, the monotonicity of both functionsα(X) andβ(X) in Proposition 2.1 is
a very strong assumption, and thus, this condition may be satisfied in some situations but it could
be violated in others. Thus, it is our objective in this paper to derive covariance inequalities for
both monotonic functions and non-monotonic functions. We first apply the Cuadras identity
to relax the monotonicity assumption ofβ(x) for a single random variable in the Chebyshev
inequality, as shown in the following theorem:

Theorem 2.2.LetX be a random variable symmetric about zero with support on[−b, b]. Con-
sider two real functionsα(x) andβ(x). Assume thatβ(x) is an odd function of bounded varia-
tion withβ(x) ≥ (≤)0 for all x ≥ 0. We have

(1) if α(x) is increasing, thenCov
[
α(X), β(X)

]
≥ (≤)0; and

(2) if α(x) is decreasing, thenCov
[
α(X), β(X)

]
≤ (≥)0.

Proof. We only prove Part (a) of Theorem 2.2 withβ(x) ≥ 0 for all x ≥ 0. Using Cuadras’ [2]
identity, we obtain

(2.3) Cov
[
α(X), β(Y )

]
=

∫ b

−b

∫ b

−b

[
H(x, y)− F (x)G(y)

]
dα(y) dβ(x) ,

whereH(x, y), F , andG are defined in (2.2). SinceX = Y in the theorem, we haveH(x, y) =
F (min{x, y}). Therefore, we can write:

(2.4) Cov
[
α(X), β(X)

]
=

∫ b

−b

∫ b

−b

F [min(x, y)] dα(y) dβ(x)−
∫ b

−b

∫ b

−b

F (x)F (y) dα(y) dβ(x) .
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The second term on the right hand side of (2.4) can be expressed as∫ b

−b

∫ b

−b

F (x)F (y) dα(y) dβ(x)

=

∫ b

−b

F (y)

[∫ b

−b

F (x) dβ(x)

]
dα(y)

=

∫ b

−b

F (y)

[
−

∫ b

−b

β(x)dF (x) + β(b)F (b)− β(−b)F (−b)

]
dα(y)

=

∫ b

−b

F (y)β(b) dα(y) = β (b)

[
−

∫ b

−b

α(y)dF (y) + α(b)

]
= β (b)

[
α (b)− µα

]
,(2.5)

where

µα =

∫ b

−b

α(y)dF (y) .

On the other hand, the first term on the right side of (2.4) becomes

∫ b

−b

[∫ b

−b

F [min(x, y)] dβ(x)

]
dα (y) =

∫ b

−b

[∫ y

−b

F (x) dβ(x) +

∫ b

y

F (y) dβ(x)

]
dα (y) .

In addition, we have ∫ b

y

F (y) dβ(x) = F (y)
[
β(b)− β (y)

]
,

and hence, ∫ b

−b

F (y)
[
β(b)− β (y)

]
dα(y)

=

∫ b

−b

F (y)β(b) dα(y)−
∫ b

−b

F (y)β (y) dα(y)

= β(b)
[
− µα + α (b)

]
−

∫ b

−b

F (y)β (y) dα(y) .

Similarly, one can easily show that∫ y

−b

F (x) dβ(x) = −
∫ y

−b

β(x)dF (x) + F (y)β(y) .

Thus, we have∫ b

−b

[∫ y

−b

F (x) dβ(x)

]
dα(y) =

∫ b

−b

[
−

∫ y

−b

β(x)dF (x) + F (y)β(y)

]
dα(y)

= −
∫ b

−b

[∫ y

−b

β(x)dF (x)

]
dα(y) +

∫ b

−b

F (y)β(y) dα(y) ,

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 75, 7 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 MARTIN EGOZCUE, LUIS FUENTESGARCIA , AND WING-KEUNG WONG

and hence,∫ b

−b

[∫ b

−b

F [min(x, y)] dβ(x)

]
dα (x)

= β(b)
[
− µα + α (b)

]
−

∫ b

−b

F (y)β (y) dα(y)

−
∫ b

−b

[∫ y

−b

β(x)dF (x)

]
dα(y) +

∫ b

−b

F (y)β(y) dα(y)

= β(b)
[
− µα + α (b)

]
−

∫ b

−b

[∫ y

−b

β(x)dF (x)

]
dα(y) .(2.6)

Thereafter, substituting (2.5) and (2.6) into (2.4), we get:

Cov
[
α(X), β(X)

]
= β(b)

[
− µα + α (b)

]
−

∫ b

−b

[∫ y

−b

β(x)dF (x)

]
dα(y)− β(b)

[
− µα + α (b)

]
= −

∫ b

−b

[∫ y

−b

β(x)dF (x)

]
dα(y) .

In addition, one could easily show thatT (y) = −
∫ y

−b
β(x)dF (x) is an even function. Thus, we

get

Cov
[
α(X), β(X)

]
=

∫ b

−b

T (y) dα(y)

=

∫ 0

−b

T (y) dα(y) +

∫ b

0

T (y) dα(y)

= −
∫ b

0

T (y) dα(−y) +

∫ b

0

T (y) dα(y)

=

∫ b

0

T (y)
[
d
(
α(y)− α(−y)

)]
≥ 0 .

The above inequality holds because:

(1) It can easily be shown thatT (y) = −
∫ y

−b
β(x)dF (x) is decreasing and positive for

y ≥ 0, and
(2)

(
α(y)− α(−y)

)
is increasing.

We note that (2) holds becauseα(x) is an increasing function. Thus, the assertion in Part (a)
of Theorem 2.2 holds withβ(x) ≥ 0 for all x ≥ 0. The results for other situations can similarly
be proved. �

One may wonder whether the monotonicity assumption for bothα (x) andβ(x) in Theo-
rem 2.2 could be relaxed. We do this for the Chebyshev inequality as shown in the following
theorem:

Theorem 2.3.LetX be a random variable symmetric about zero with support on[−b, b]. Con-
sider two real functionsα(x) andβ(x). Letβ(x) be an odd function of bounded variation with
β(x) ≥ (≤)0 for all x ≥ 0. We have

(1) if α(x) ≥ α(−x) for all x ≥ 0, thenCov[α(X), β(X)] ≥ (≤)0; and
(2) if α(x) ≤ α(−x) for all x ≥ 0 thenCov[α(X), β(X)] ≤ (≥)0.
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Proof. We only prove Part (a) of Theorem 2.3 withβ(x) ≥ 0 for all x ≥ 0. We note that
sinceβ(x) is an odd function andX is a random variable symmetric about zero with support on
[−b, b], thenE

[
β(X)

]
= 0. Applying the same steps as shown in the proof of Theorem 2.2, we

obtain

Cov
[
α(X), β(X)

]
=

∫ b

−b

[
−

∫ y

−b

β(x)dF (x)

]
dα(y) ≥ 0 .

DefiningT (y) = −
∫ y

−b
β(x)dF (x), we have

Cov
[
α(X), β(X)

]
=

∫ b

−b

T (y) dα(y)

= −
∫ b

−b

α(y)dT (y) + T (b)α(b)− T (−b)α(−b) .

As one can easily show thatT (y) is an even function, thenT (b) = −E
[
β(X)

]
= 0, T (−b) = 0,

and we get:

Cov
[
α(X), β(X)

]
= −

∫ b

−b

α(y)dT (y)

= −
∫ 0

−b

α(y)dT (y)−
∫ b

0

α(y)dT (y)

=

∫ −b

0

α(y)dT (y)−
∫ b

0

α(y)dT (y)

=

∫ b

0

α(−y)dT (y)−
∫ b

0

α(y)dT (y)

=

∫ b

0

[
α(−y)− α(y)

]
dT (y) ≥ 0 .

In addition, one can easily show thatT (y) is a decreasing function fory ≥ 0. Moreover, by
assumption,α(−y)−α(y) ≤ 0. Thus, we haveCov

[
α(X), β(X)

]
≥ 0, and hence, the assertion

in Part (a) of Theorem 2.3 follows withβ(x) ≥ 0 for all x ≥ 0. The results for other situations
can similarly be proved. �

In the above results, bothα andβ are functions of the same variableX. We next extend the
results such thatα andβ are functions of two different variables, sayX andY , respectively.
However, in order to do this, additional assumptions have to be imposed. In this paper, we
assume that both variables have positive quadrant dependency; that is,H(x, y)−F (x)G(y) ≥ 0.

Theorem 2.4.LetX andY be two random variables with positive quadrant dependency. Con-
sider two functionsα(x) andβ(x). We have:

(1) if α(x) is increasing (decreasing) andβ(x) is increasing (decreasing), then

Cov
[
α(X), β(Y )

]
≥ 0,

(2) if one of the functions is increasing and the other is decreasing, then

Cov
[
α(X), β(Y )

]
≤ 0.

Proof. We only prove the second part of Theorem 2.4. The first part of the theorem can be
proved similarly. LettingK(x, y) = H(x, y)− F (x)G(y), we have

Cov
[
α(X), β(Y )

]
=

∫ b

a

∫ b

a

K(x, y) dα(x) dβ(y) .
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For the situation in whichα(x) is an increasing function, sinceK(x, y) ≥ 0 is continuous, we
have

T (y) =

∫ b

a

K(x, y) dα(x) ≥ 0 .

In addition, as
(
− β(x)

)
is an increasing function, we can easily show that

Cov
[
α(X), β(Y )

]
= −

∫ b

a

K(x, y)d
(
− β(y)

)
≤ 0 ,

and thus the assertion follows. �

We note that reverse results can easily be obtained if one assumes negative quadrant depen-
dency. Therefore, we skip the discussion of properties of the covariance inequality for negative
quadrant dependency.

We first developed Theorem 2.2 to relax the monotonicity assumption on the functionβ(x)
for Proposition 2.1. We also developed Theorem 2.3 to relax the monotonicity assumption on
both α(x) andβ(x). Thereafter, we developed results for the Chebyshev inequality for two
random variablesX andY as shown in Theorem 2.4. We then considered relaxing the mono-
tonicity assumption for Theorem 2.4. To relax the monotonicity assumption on the function(s)
for Proposition 2.1, as shown in Theorems 2.2 and 2.3, is easier than for Theorem 2.4 as these
theorems deal with only one variable, whereas Theorem 2.4 deals with two random variablesX
andY . In this paper, we managed to relax the monotonicity assumption onβ(x) for Theorem
2.4 as shown in below. We leave the relaxation of the monotonicity assumption on bothα(x)
andβ(x) for further study.

Theorem 2.5.LetX andY be two dependent random variables with support on[−b, b]. Assume
K(x, y) = H(x, y) − F (x)G(y) is increasing iny. Consider two functionsα(x) and β(x),
whereβ(x) is an even function of bounded variation increasing (decreasing) for allx ≥ 0. We
have

(1) if α(x) is increasing, thenCov
[
α(X), β(Y )

]
≥ (≤) 0; and

(2) if α(x) is decreasing, thenCov
[
α(X), β(Y )

]
≤ (≥) 0.

Proof. We only prove the first part. Let

Cov
[
α(X), β(Y )

]
=

∫ b

−b

∫ b

−b

K(x, y) dα(x) dβ(y) .

Since ∂K
∂y

≥ 0, K(x, y) − K(x,−y) ≥ 0 for all y ≥ 0. Using the assumption thatβ(x) is an
even function and increasing forx ≥ 0, we obtain

T (x) =

∫ b

−b

K(x, y) dβ(y)

=

∫ 0

−b

K(x, y) dβ(y) +

∫ b

0

K(x, y) dβ(y)

= −
∫ −b

0

K(x, y) dβ(y) +

∫ b

0

K(x, y) dβ(y)

=

∫ b

0

[
K(x, y)−K(x,−y)

]
dβ(y) ≥ 0

Finally, asα(x) is an increasing function, we get

Cov
[
α(X), β(Y )

]
=

∫ b

−b

T (x) dα(x) ≥ 0 ,
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and the assertion follows. �

We note that, in this case, we have relaxed the monotonicity assumption of one of the func-
tions.

3. CONCLUSION

We derived some covariance inequalities for monotonic and non-monotonic functions. Al-
though we relaxed the monotonicity assumptions in some of our results, we imposed a symme-
try assumption on the random variables and restricted our analysis only to even or odd functions.
The analysis of new covariance inequalities without these assumptions remains a task for future
research.
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