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Abstract

S.M. Ulam, 1940, proposed the well-known Ulam stability problem and in 1941,
the problem for linear mappings was solved by D.H. Hyers. D.G. Bourgin,
1951, also investigated the Ulam problem for additive mappings. PM. Gru-
ber, claimed, in 1978, that this kind of stability problem is of particular interest
in probability theory and in the case of functional equations of different types.
F. Skof, in 1981, was the first author to solve the Ulam problem for quadratic
mappings. During the years 1982-1998, the author established the Hyers-Ulam
stability for the Ulam problem for different mappings. In this paper we solve
the Ulam stability problem by establishing an approximation of approximately
quadratic mappings by quadratic mappings. Today there are applications in
actuarial and financial mathematics, sociology and psychology, as well as in
algebra and geometry.

2000 Mathematics Subject Classification: 39B

Key words: Ulam problem, Ulam type problem, General Ulam problem, Quadratic
mapping, Approximately quadratic mapping, Square of the quadratic
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S.M. Ulam [24] proposed thgeneral Ulam stability problem'When is it true

that by slightly changing the hypotheses of a theorem one can still assert that

the thesis of the theorem remains true or approximately true?" D.H. Hydrs [

solved this problem for linear mappings. D.G. Bourgit &lso investigated

the Ulam problem for additive mappings. P.M. Grubg&¥][claimed that this

kind of stability problem is of particular interest in probability theory and in the

case of functional equations of different types. Th.M. Rassiasdmployed e —

Hyers’ ideas to new additive mappings, and later I. Fenyfj [F]) established Approximation Of

the stability of the Ulam problem for quadratic and other mappings. Z. Gajda Aﬁ;’gg‘:}ﬂ}“&?g&&j‘:ﬂ:&g

and R. Ger [ (] showed that one can obtain analogous stability results for sub- Mappings

additive multifunctions. Other interesting stability results have been achieved

also by the following authors: J. Aczél][ C. Borelli and G.L. Forti (7], [9]),

P.W. Cholewa 4], St. Czerwik [], H. Drljevic [6] and L. Paganonil4]. F.

Skof ([21] — [22]) was the first author to solve the Ulam problem for quadratic Title Page

mappings. We ([5] — [19]) solved the above Ulam problem for different map- Contents

pings. P. Gvru@ [11] answered a question of ours/ concerning the stability

of the Cauchy equation. Today there are applications in actuarial and financial « dd

mathematics, sociology and psychology, as well as in algebra and geometry. < >
In this paper we introduce the following quadratic functional equation

John Michael Rassias

Go Back
() Qarmy + azw2) + Q(a2ry — a173) = (a% + a%) [Q(71) + Q(a2)] Close
with quadratic mappingg) : X — Y such thatX andY are real linear Quit
spaces. Page 3 of 20
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K, = K, (||z1||, [|22]])
= |27 ol + o) = (lan + 22l + o = ")
_ { 2 (" + all”) = (s + 2ol + oy = 2al), i > 2

oy + wol|” + [l — 22" = 277 (lal]” + [Jz2]), L <r <2,

for every(z1,z2) € X2, whereX is a normed linear space. Note that > 0
for any fixed real : 1 < r # 2. Note also that

The UI Stability Probl |
K, = K, (|||, ||=[)) = 0, e S

Approximately Quadratic
Mappings By Quadratic

Ky (laa] [zl az| |z]]) = Bu ll=|" Mappings
K, (m " ai| |||l ,m™ " ao] ||2]]) = Bim ™" ||z||", John Michael Rassias
K. (||=],0) = B ||lz||" and
K, (m™"||z|,0) = Bs[|z]", Title Page
where Contents
B = K, (|ai] ]as]) L2
= 277 (laa]” + Jaal") = (Jou + @zl + s = aa]")| —
27 (a]" +ao]") = (lar + ao]" + a1 — aof"), ifr > 2 Go Back
- { a1 + az|" + a1 — az|” = 277 (laa|” + faz["), i 1<r <2, Close
Quit

r-1_92 jifr>2
2271 if 1l <r <2,

Page 4 of 20

Bo=K,(1,0)=]2""—-2| = {

J. Ineq. Pure and Appl. Math. 5(3) Art. 52, 2004

httrn//itinarm vit odir ann


http://jipam.vu.edu.au/
mailto:jrassias@primedu.uoa.gr
http://jipam.vu.edu.au/

B3 = K, (mfly 0) = o™,

Note thata; # a,, andl # m = a? + a2 > 0.

If X andY are normed linear spaces aridcomplete, then we establish an
approximation of approximately quadratic mappirfgs X — Y by quadratic
mappings?) : X — Y, such that the corresponding approximately quadratic
functional inequality

() Hf(a1$1 + Clzfz) + f(a2$1 - a1$2) - (af + ag) [f ($1) + f (@)]H
< K ([Joa]l, [Jz2])

holds with a constant > 0 (independent of;,z, € X), and any fixed pair
a = (aj,az) € R* — {(0,0)} and any fixed reat > 1 :

L={(rm)eR*:1<r<2m>1andr>20<m<1}or
L={rmecR:1<r<20<m<1andr>2m>1},

hold, wherel # m = a? + a2 = |a|* > 0 anda, # a,. Note thatm’2 < 1 if
(r,m) € Iy, andm*™" < 1if (r,m) € L.
It is useful for the following, to observe that, from)with ; = x5 = 0, and
0 <m # 1 we get
2(m —1)Q(0) = 0,

or

(1.1) Q(0) = 0.
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Definition 1.1. Let Xand Y be real linear spaces. Let = (a;,a,) € R? —
{(0,0)} : 0 < m = a? + a3 # 1 anda; # ay. Then a mapping) : X — Y is
called quadratic with respect to, if (+) holds for every vectofr,, ;) € X2
Definition 1.2. Let XandY be real linear spaces. Let = (a;,ay) € R?* —
{(0,0)} : 0 < m = a? + a2 # 1 anda; # a,. Then a mapping) : X — Y
is called the square of the quadratic weighted meaafith respect tax =
(al, CLQ), |f

. ) X The Ulam Stability Problem In
1.2 he Ul bil bl
Approximation Of
%@2@2@’ if (T, m = a% + a%) el Approximately Quadratic
aj+a; Mappings By Quadratic
= Mappings
(a% + CL%) [Q (a{ia% 37) + Q <a{fa% 33)} ) if (7"7 m = a% + a%) € [2 John Michael Rassias
forall x € X.
Title Page

For everyzr € R setQ(z) = 22. Then the mappin@ : R — R is quadratic,

_ . — . . Contents
suchthat) (z) = z?. Denoting by,/z2, the quadratic weighted meawe note
that the above-mentioned mappi€gis an analogous case tioe square of the « dd
—_ 2.2 2,.2
quadratic weighted meaemployed in mathematical statistics?, = % < >
with weightsw, = a7 andw, = a3, datar; = z, = x, andQ (a;z) = (aix)Q, Go Back
(i=1,2).
Now, claim that forn € Ny = {0,1,2,... } that Close
uit
m=2Q(m"x), if (r,m) el 2
(1.3) Q(x) = Page 6 of 20
m2"Q(m~"x), if (r,m) € I,
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forall € Xandn € Nj.
Forn = 0, itis trivial. From (L.1), (1.2) and ), with z; = a;x (i = 1,2),
we obtain
Q(max) =m [Q(a1z) + Q(azw)] ,
or

(1.4) Q(z) = m~*Q(ma),
if 7; holds. Besides froml(1), (1.2) and ), with 1 = z, 5 = 0, we get

Q(a17) + Q(agx) = mQ(x),

or

(1.5) Q(z) = Q(z),

if I; holds. Therefore froml(4) and (L.5) we have
(1.6) Q(x) = m™*Q(ma),

which is (1.3) for n = 1, if I; holds. Similarly, from {.1), (1.2) and ), with
r; = %z (i = 1,2), we obtain

(1.7) Q(r) = Q(x)
if I holds. Besides fromi(1), (1.2) and ), with z; = =, z, = 0, we get

() + 0 (5) =t
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or

(1.8) Q(x) = m*Q(m™'x)
if I holds. Therefore froml(7) and (L.8) we have
(1.9) Q(z) = m*Q(m™'x),

which is (L.3) for n = 1, if I; holds.
Assume (.3) is true and from 1.6), with m™x in place ofz, we get:

(1.10) Q@ (m"'z) =m*Q(m"z) = m*(m")’Q(z) = (m”“)2 Q(x).

Similarly, with m~"x in place ofz, we get:
(1.11) Q (m~"tVz) = m?Q(m "x)

= m =2 (m ™) Q(x) = (m~" )" Q(a).
These formulasl(.10 and (L.11) by induction, prove formulal(3).
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Theorem 2.1.Let X andY be normed linear spaces. Assume thais com-
plete. Assume in addition that mappirig: X — Y satisfies the functional
inequality ¢+). Definel;, = {(r,m) € R* : 1 < r < 2,m > 1, or
r>2 0<m<l1handlb = {(rrm) e R?: 1 <r <2,0<m< 1,
orr > 2, m > 1} for any fixed paita = (ay, as) of realsa; # 0 (i = 1,2) and
any fixed reak > 1:1# m = a?+ a2 = |a|* > 0, a; # a,. Besides define

0< 6y =K, (Jai|, |as])
=277 (Jar|" + laa]") = (|1 + @of" + a1 = as]"))|
{ 271 (|ay|" + |ao|") = (|ar + ao|” + a1 — ao|"), ifr>2

lar + as|” + |ar — as|” — 2771 (Jar|" + |ao]"),

ifl<r<?2,
By = K,(1,0) = |277! — 2|, ando = 3 + mfB3y > 0. Also define

m=2" f(mrz), if (r,m) €,
fn(x):{ flme), i (r,m) €

m2 f(m™"z), if (r,m) e L

forall x € X andn € Ny ={0,1,2,...}.
Then the limit

(2.1) Q(z) = lim f,(x)

exists for allz € X and@ : X — Y is the unique quadratic mapping with
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respect tax = (a4, az), such that

22  [f(2)-Q)] < e [Ed1K
[ oc/m? —mr), i (rm) € I
= ll=l { oc/(m" —m?), if (r,m) e I,
holds for allz € X andn € Ny andc > 0 (constant independent ofc X).
Existence

Proof. Itis useful for the following, to observe that, from«) with z; = x5 =0
and0 < m # 1, we get
2[m — 1| f(0)[| <0,

or
(2.3) f(0) =o0.

Now claim that forn € N,

24)  |f(@)=fal2)]l

ocC

| A\

- —mWQWWW

—m™=2) if (rom) e L imT <1
= [l=I"
m"®=) i (r,m) € L :m?TT < 1.
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Forn = 0, itis trivial.

Definef : X — Y, the square of the quadratic weighted meanfofvith
respect tou = (aq,as) by replacing@, @ of (1.2) with f, f, respectively, as
follows:

(2.5) f(=)

flarz)+f(asz)

2 2 9
aytaj

if (rmm=a+a=1a*) el

9 9 . 9 9 2 The Ulam Stability Problem In
(al + aQ) [f ( 2+a2$> + f < 25E>} , (Tam =ay+ta; = |a| ) €I, Approximation Of
Approximately Quadratic
Mappings By Quadratic
fOF a” T &€ X Mappings

From 2.3), (2.5 and §x), with z; = a;z (i = 1,2), we obtain

John Michael Rassias

1f (ma)=m [f(ar2)+ f (az2)]|| < ocllz]|",

Title Page
or Contents
-2 7 510
(2.6) [m =2 f(ma) = f(2)|| < — [l«]", « dd
< >
if I; holds. Besides from(3), (2.5 and ), with z; = x, 25 = 0, we get
Go Back
| f(a1z)+ f(azw) —mf (@) < ek, (l|z]] ,0) = Bac|a|", Close
or Quit
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if I; holds. Therefore fromA.6) and @.7) we have

ocC

o —— (1=m"2) ]|,

(2.8) ||f(z) —m 2 f(ma)|| < % |z||” =

which is 2.4) forn = 1, if I; holds.
Similarly, from 2.3), (2.9 and =), with z; = %z (i = 1,2), we obtain

2.9 [r@) @) < 2

if I, holds. Besides from(3), (2.5 and ), with z; = =, 2, = 0, we get
Hf (%x) +f (%x) - mf(m’lzc)H < cK, (m™' =] ,0) = Bsc|lz||",

or

(2.10) | f(z)=—m®f(m™"2)|| < mpBsc||z||” = % lz|",

if I holds. Therefore from2.9) and .10 we have

211) || f@)=m?f(m @) < o] = — T (1= m? ) [l

m" —

which is 2.4) for n = 1, if I; holds.

Assume R.4) is true if (r,m) € I;. From @.8), with m"x in place ofz, and
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the triangle inequality, we have

(2.12)  |If(z) = farr(@)]]
0) = ) |
< |[fl@) —m™" f (m )|
+ Hm_%f(m”x) —m 2t g (m”“w) H

< ng_cmr [(1 _ mn(r—Q)) Lo (1 _ mr—2) mnr:| ||
ocC
_ v o (nF1)(r=2) T
- (1-m ) llell”
if 7; holds.
Similarly assumeZ.4) is true if (r,m) € I,. From @.11), with m~"xz in
place ofz, and the triangle inequality, we have

213)  |If (@) = fara (@)
_ Hf(x) . m2(n+1)f (m—(n—l—l)m) H
< [[f @) —m*f (m™z) |

+ Hanf(m—nl,) . m2(n+1)f (m_(n+1)x) ||
ogcC

S o — [(1 . mn(?—r))+m2n(1 - m2—r>m—nr} ||w||7“
gc n —-r T
= =gz (L= el
if I holds.
Therefore inequalities2(12) and Q.13 prove inequality 2.4) for anyn €
Np.
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Claim now that the sequendg,,(z)} converges To do this it suffices to
prove that it is a Cauchy sequence. InequalitylYis involved if (r,m) € I,.
In fact, ifi > j > 0, andh; = m’x, we have:

(2.14) 1 fi(z) = fi(@)]| = [|m™> f(m'z) —m™ f(m’z)||

= 20 () — 1)
—2j  0¢€ i—j)(r—2 r
<m Jm2 — (1 — m =) )) ||$||
< ¥ g —— 0,
ms —m” Jj—00
if I, holds:m™2 < 1.
Similarly, if hy = m~7z in I,, we have:

(2.15) 1 fi(z) = fi(@)|| = [|m* f(m™ ) = m* f(m™2)]|
= m? [|m*C I (m™C ) = f(ho)|
. ocC i) (2—r r
< m2jm (1 — =02 )) |||
< —Z ¥ e —— 0,
m"—m Jj—00
if I, holds:m?™" < 1.
Then inequalities4.14) and @.15 definea mapping? : X — Y, given by
(2.2).
Claim that from ¢x) and @.1) we can get«), or equivalently that the afore-
mentioned well-defined mapping : X — Y is quadratic
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In fact, it is clear from the functional inequalityX) and the limit @.1) for
(r,m) € I, that the following functional inequality

m” " || flaym" @1 4 asm"z) + f(aom” 1 — aymxs)

—(ai +a3) [f(m"z1) + f(m" 2]
< m ek (m” [l m" (lza))

holds for all vectorgz,, z;) € X2, and alln € N with f,(z) = m™2"f(m"x) :
I, holds. Therefore

lim f,(a121 + axrz) + lim f, (a1 — ay2)

o — (a} +a3) [ lim fulw) + lim fo(ao)] |

< (lim m"2) ek, (| ) = 0,

n—oo

becausen” 2 < 1 or
(216) HQ(alxl —|—a2$2)—|—Q(CL25L’1 —Clll'g)— (a%—i—ag) [Q(-Tl)‘i‘Q(xQ)] H :07

or mappingQ satisfies the quadratic equatior).(
Similarly, from ¢«x) and @.12) for (r,m) € I, we get that

m*" || flaym ™"z + agm ™ "za)+ f(asm ™"z — aym "z
—(af + a3) [f(m™"w1)+f (m™"xs)] ||
<m K, (m™" ||l ,m™" [|ao]])
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holds for all vectorgz,, z5) € X?, and alln € Nwith f,(z) = m*"f(m"z) :
I, holds. Thus

lim f,(a171 + aprz)+ Im f,,(axr1 — a122)

o ~ (o} +a3) [l fu(e)+ lim f(eo)] |

< (Jim m"=) e, (] Jlz2]) = 0,
becausen® " < 1, or (2.16) holds or mapping satisfies £).

Therefore .16 holds if I; (j = 1, 2) hold or mappingy satisfies £), com-
pleting the proof thaf) is a quadratic mappingn X.

It is now clear from 2.4) with n — oo, as well as formulad.1) that 2.2
holds inX. This completeshe existence proodf the above Theored.1. [

Uniqueness
LetQ' : X — Y be a quadratic mapping satisfyir{g.2), as well as). Then
Q=Q.

Proof. Remember botld) and @’ satisfy (L.3) for (r,m) € I, too. Then for
everyr € X andn € N,

(2.17)  [Q(z) — Q'(2)||
= Hm_2"Q(m”x) - m_2"Q’(m"x)H

<m " {[|Q(m"x) — f(m"2)|| + Q' (m"x) — f(m"z)||}
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20c
< m—2n r

m2 —mr
_ ) 20c .

if I, holds:m™2 < 1.
Similarly for (r,m) € I, we establish

(2.18) [|Q(z) — Q'(2)||
= ||m2”Q(m_"x) - mQ"Q'(m_”x)H

< m* {{|Q(m™"z) — f(m™"z)|| +[|Q'(m™"x) — f(m™"z)||}
on  20¢C
<m 22|
mr — m2
= ) _29C
mr — m2
if I, holds:m?™" < 1.
Thus from @.17), and .18 we findQ(x) = Q’'(x) forall z € X.
This completes the proof of theniquenesandstability of equation ¢). [

Open Problem What is the situation in the above Theorérin caser = 27?
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