Journal of Inequalities in Pure and Applied Mathematics

Volume 6, Issue 1, Article 21, 2005

DIRECT RESULTS FOR CERTAIN FAMILY OF INTEGRAL TYPE OPERATORS

VIJAY GUPTA AND OGÜN DOĞRU
School of Applied Sciences
Netaji Subhas Institute of Technology
Sector 3 Dwarka, New Delhi-110045, INDIA
vijay@nsit.ac.in
Ankara University
Faculty of Science
Department of Mathematics
TANDOĞAN, ANKARA-06100, TURKEY
dogru@science.ankara.edu.tr
Received 08 September, 2004; accepted 22 January, 2005
Communicated by D. Hinton

Abstract

In the present paper we introduce a certain family of linear positive operators and study some direct results which include a pointwise convergence, asymptotic formula and an estimation of error in simultaneous approximation.

Key words and phrases: Linear positive operators, Simultaneous approximation, Steklov mean, Modulus of continuity.
2000 Mathematics Subject Classification 41A25, 41A30.

1. Introduction

We consider a certain family of integral type operators, which are defined as

$$
\begin{equation*}
B_{n}(f, x)=\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t) f(t) d t+(1+x)^{-n-1} f(0), \quad x \in[0, \infty), \tag{1.1}
\end{equation*}
$$

where

$$
p_{n, \nu}(t)=\frac{1}{B(n, \nu+1)} t^{\nu}(1+t)^{-n-\nu-1}
$$

with $B(n, \nu+1)=\nu!(n-1)!/(n+\nu)$! the Beta function.
Alternatively the operators (1.1) may be written as

$$
B_{n}(f, x)=\int_{0}^{\infty} W_{n}(x, t) f(t) d t
$$

ISSN (electronic): 1443-5756
(C) 2005 Victoria University. All rights reserved.

The authors are thankful to the referee for his/her useful recommendations and valuable remarks.
165-04
where

$$
W_{n}(x, t)=\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) p_{n, \nu-1}(t)+(1+x)^{-n-1} \delta(t),
$$

$\delta(t)$ being the Dirac delta function. The operators B_{n} are discretely defined linear positive operators. It is easily verified that these operators reproduce only the constant functions. As far as the degree of approximation is concerned these operators are very similar to the operators considered by Srivastava and Gupta [5], but the approximation properties of these operators are different. In this paper, we study some direct theorems in simultaneous approximation for the operators (1.1).

2. Auxiliary Results

In this section we mention some lemmas which are necessary to prove the main theorems.
Lemma 2.1 ([3]). For $m \in \mathbb{N}^{0}$, if the m-th order moment is defined as

$$
U_{n, m}(x)=\frac{1}{n} \sum_{\nu=0}^{\infty} p_{n, \nu}(x)\left(\frac{\nu}{n+1}-x\right)^{m}
$$

then

$$
(n+1) U_{n, m+1}(x)=x(1+x)\left[U_{n, m}^{\prime}(x)+m U_{n, m-1}(x)\right] .
$$

Consequently

$$
U_{m, n}(x)=\mathcal{O}\left(n^{-[(m+1) / 2]}\right) .
$$

Lemma 2.2. Let the function $\mu_{n, m}(x), n>m$ and $m \in \mathbb{N}^{0}$, be defined as

$$
\mu_{n, m}(x)=\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m} d t+(-x)^{m}(1+x)^{-n-1}
$$

Then

$$
\mu_{n, 0}(x)=1, \mu_{n, 1}(x)=\frac{2 x}{(n-1)}, \mu_{n, 2}(x)=\frac{2 n x(1+x)+2 x(1+4 x)}{(n-1)(n-2)}
$$

and there holds the recurrence relation

$$
\begin{aligned}
& (n-m-1) \mu_{n, m+1}(x) \\
& \quad=x(1+x)\left[\mu_{n, m}^{\prime}(x)+2 m \mu_{n, m-1}(x)\right]+[m(1+2 x)+2 x] \mu_{n, m}(x)
\end{aligned}
$$

Consequently for each $x \in[0, \infty)$, we have from this recurrence relation that

$$
\mu_{n, m}(x)=\mathcal{O}\left(n^{-[(m+1) / 2]}\right) .
$$

Proof. The values of $\mu_{n, 0}(x), \mu_{n, 1}(x)$ and $\mu_{n, 2}(x)$ easily follow from the definition. We prove the recurrence relation as follows

$$
\begin{aligned}
x(1+x) \mu_{n, m}^{\prime}(x)= & \frac{1}{n} \sum_{\nu=1}^{\infty} x(1+x) p_{n, \nu}^{\prime}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m} d t \\
& -m \frac{1}{n} \sum_{\nu=1}^{\infty} x(1+x) p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m-1} d t \\
& -\left[(n+1)(-x)^{m}(1+x)^{-n-2}+m(-x)^{m-1}(1+x)^{-n-1}\right] x(1+x) .
\end{aligned}
$$

Now using the identities $x(1+x) p_{n, \nu}^{\prime}(x)=[\nu-(n+1) x] p_{n, \nu}(x)$, we obtain

$$
\begin{aligned}
& x(1+x)\left[\mu_{n, m}^{\prime}(x)+m \mu_{n, m-1}(x)\right] \\
& =\frac{1}{n} \sum_{\nu=1}^{\infty}[\nu-(n+1) x] p_{n, \nu}(x) \\
& \times \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m} d t+(n+1)(-x)^{m+1}(1+x)^{-n-1} \\
& =\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty}[\{(\nu-1)-(n+1) t\}+(n+1)(t-x)+1] p_{n, \nu-1}(t)(t-x)^{m} d t \\
& +(n+1)(-x)^{m+1}(1+x)^{-n-1} \\
& =\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} t(1+t) p_{n, \nu-1}^{\prime}(t)(t-x)^{m} d t \\
& +(n+1) \frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m+1} d t \\
& +\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m} d t+(n+1)(-x)^{m+1}(1+x)^{-n-1} \\
& =\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty}\left[(1+2 x)(t-x)+(t-x)^{2}+x(1+x)\right] p_{n, \nu-1}^{\prime}(t)(t-x)^{m} d t \\
& +(n+1) \frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m+1} d t \\
& +\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{m} d t+(n+1)(-x)^{m+1}(1+x)^{-n-1} \\
& =-(m+1)(1+2 x)\left[\mu_{n, m}(x)-(-x)^{m}(1+x)^{-n-1}\right] \\
& -(m+2)\left[\mu_{n, m+1}(x)-(-x)^{m+1}(1+x)^{-n-1}\right] \\
& -m x(1+x)\left[\mu_{n, m-1}(x)-(-x)^{m-1}(1+x)^{-n-1}\right] \\
& +(n+1)\left[\mu_{n, m+1}(x)-(-x)^{m+1}(1+x)^{-n-1}\right] \\
& +\left[\mu_{n, m}(x)-(-x)^{m}(1+x)^{-n-1}\right]+(n+1)(-x)^{m+1}(1+x)^{-n-1} \\
& =-[m(1+2 x)+2 x] \mu_{n, m}(x)+(n-m-1) \mu_{n, m+1}(x)-m x(1+x) \mu_{n, m-1}(x) \text {. }
\end{aligned}
$$

This completes the proof of recurrence relation.
Remark 2.3. It is easily verified from Lemma 2.2 and by the principle of mathematical induction, that for $n>i$ and each $x \in(0, \infty)$

$$
\begin{aligned}
& B_{n}\left(t^{i}, x\right)=\frac{(n+i)!(n-i-1)!}{n!(n-1)!} x^{i} \\
& \quad+i(i-1) \frac{(n+i-1)!(n-i-1)!}{n!(n-1)!} x^{i-1}+i(i-1)(i-2) \mathcal{O}\left(n^{-2}\right)
\end{aligned}
$$

Corollary 2.4. Let δ be a positive number. Then for every $n>\gamma>0, x \in(0, \infty)$, there exists a constant $M(s, x)$ independent of n and depending on s and x such that

$$
\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{|t-x|>\delta} p_{n, \nu-1}(t) t^{\gamma} d t \leq M(s, x) n^{-s}, \quad s=1,2,3, \ldots
$$

Lemma 2.5 ([[3]). There exist the polynomials $Q_{i, j, r}(x)$ independent of n and ν such that

$$
\{x(1+x)\}^{r} D^{r}\left[p_{n, \nu}(x)\right]=\sum_{\substack{2 i+j \leq r \\ i, j \geq 0}}(n+1)^{i}[\nu-(n+1) x]^{j} Q_{i, j, r}(x) p_{n, \nu}(x)
$$

where $D \equiv \frac{d}{d x}$.
Lemma 2.6. Let f be r times differentiable on $[0, \infty)$ such that $f^{(r-1)}$ is absolutely continuous with $f^{(r-1)}(t)=\mathcal{O}\left(t^{\gamma}\right)$ for some $\gamma>0$ as $t \rightarrow \infty$. Then for $r=1,2,3, \ldots$ and $n>\gamma+r$ we have

$$
B_{n}^{(r)}(f, x)=\frac{(n+r-1)!(n-r-1)!}{n!(n-1)!} \sum_{\nu=0}^{\infty} p_{n+r, \nu}(x) \int_{0}^{\infty} p_{n-r, \nu+r-1}(t) f^{(r)}(t) d t
$$

Proof. It follows by simple computation the following relations:

$$
\begin{equation*}
p_{n, \nu}^{\prime}(t)=n\left[p_{n+1, \nu-1}(t)-p_{n+1, \nu}(t)\right] \tag{2.1}
\end{equation*}
$$

where $t \in[0, \infty)$.
Furthermore, we prove our lemma by mathematical induction. Using the above identity (2.1), we have

$$
\begin{aligned}
B_{n}^{\prime}(f, x)= & \frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}^{\prime}(x) \int_{0}^{\infty} p_{n, \nu-1}(t) f(t) d t-(n+1)(1+x)^{-n-2} f(0) \\
= & \sum_{\nu=1}^{\infty}\left[p_{n+1, \nu-1}(x)-p_{n+1, \nu}(x)\right] \int_{0}^{\infty} p_{n, \nu-1}(t) f(t) d t \\
& \quad-(n+1)(1+x)^{-n-2} f(0) \\
= & n p_{n+1,0}(x) \int_{0}^{\infty} p_{n, 0}(t) f(t) d t-(n+1)(1+x)^{-n-2} f(0) \\
& +\sum_{\nu=1}^{\infty} p_{n+1, \nu}(x) \int_{0}^{\infty}\left[p_{n, \nu}(t)-p_{n, \nu-1}(t)\right] f(t) d t \\
= & (n+1)(1+x)^{-n-2} \int_{0}^{\infty} n(1+t)^{-n-1} f(t) d t \\
& +\sum_{\nu=1}^{\infty} p_{n+1, \nu}(x) \int_{0}^{\infty}\left(\frac{-1}{n-1}\right) p_{n-1, \nu}^{\prime}(t) f(t) d t \\
& \quad-(n+1)(1+x)^{-n-2} f(0)
\end{aligned}
$$

Applying the integration by parts, we get

$$
\begin{aligned}
B_{n}^{\prime}(f, x)= & (n+1)(1+x)^{-n-2} f(0)+(n+1)(1+x)^{-n-2} \int_{0}^{\infty}(1+t)^{-n} f^{\prime}(t) d t \\
& +\frac{1}{n-1} \sum_{\nu=1}^{\infty} p_{n+1, \nu}(x) \int_{0}^{\infty} p_{n-1, \nu}(t) f^{\prime}(t) d t-(n+1)(1+x)^{-n-2} f(0) \\
= & \frac{1}{n-1} \sum_{\nu=0}^{\infty} p_{n+1, \nu}(x) \int_{0}^{\infty} p_{n-1, \nu}(t) f^{\prime}(t) d t
\end{aligned}
$$

which was to be proved.
If we suppose that

$$
B_{n}^{(i)}(f, x)=\frac{(n+i-1)!(n-i-1)!}{n!(n-1)!} \sum_{\nu=0}^{\infty} p_{n+i, \nu}(x) \int_{0}^{\infty} p_{n-i, \nu+i-1}(t) f^{(i)}(t) d t
$$

then by (2.1), and using a similar method to the one above it is easily verified that the result is true for $r=i+1$. Therefore by the principle of mathematical induction the result follows.

3. Simultaneous Approximation

In this section we study the rate of pointwise convergence of an asymptotic formula and an error estimation in terms of a higher order modulus of continuity in simultaneous approximation for the operators defined by 1.1). Throughout the section, we have $C_{\gamma}[0, \infty):=$ $\left\{f \in C[0, \infty):|f(t)| \leq M t^{\gamma}\right.$ for some $\left.M>0, \gamma>0\right\}$.
Theorem 3.1. Let $f \in C_{\gamma}[0, \infty), \gamma>0$ and $f^{(r)}$ exists at a point $x \in(0, \infty)$, then

$$
B_{n}^{(r)}(f, x)=f^{(r)}(x)+o(1) \text { as } n \rightarrow \infty .
$$

Proof. By Taylor's expansion of f, we have

$$
f(t)=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!}(t-x)^{i}+\varepsilon(t, x)(t-x)^{r},
$$

where $\varepsilon(t, x) \rightarrow 0$ as $t \rightarrow x$.
Hence

$$
\begin{aligned}
B_{n}^{(r)}(f, x)= & \int_{0}^{\infty} W_{n}^{(r)}(t, x) f(t) d t \\
= & \sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \int_{0}^{\infty} W_{n}^{(r)}(t, x)(t-x)^{i} d t \\
& \quad+\int_{0}^{\infty} W_{n}^{(r)}(t, x) \varepsilon(t, x)(t-x)^{r} d t \\
= & R_{1}+R_{2} .
\end{aligned}
$$

First to estimate R_{1}, using the binomial expansion of $(t-x)^{m}$, Lemma 2.2 and Remark 2.3, we have

$$
R_{1}=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} \sum_{\nu=0}^{i}\binom{i}{\nu}(-x)^{i-\nu} \frac{\partial^{r}}{\partial x^{r}} \int_{0}^{\infty} W_{n}(t, x) t^{\nu} d t
$$

$$
\begin{aligned}
& =\frac{f^{(r)}(x)}{r!} \frac{\partial^{r}}{\partial x^{r}} \int_{0}^{\infty} W_{n}(t, x) t^{r} d t \\
& =\frac{f^{(r)}(x)}{r!}\left\{\frac{(n+r)!(n-r-1)!}{n!(n-1)!} r!+\text { terms containing lower powers of } x\right\} \\
& =f^{(r)}(x)+o(1), \quad n \rightarrow \infty .
\end{aligned}
$$

Using Lemma 2.5, we obtain

$$
\begin{aligned}
R_{2}= & \int_{0}^{\infty} W_{n}^{(r)}(t, x) \varepsilon(t, x)(t-x)^{r} d t \\
= & \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i} \frac{Q_{i, j, r}(x)}{\{x(1+x)\}^{r}} \sum_{\nu=1}^{\infty}[\nu-(n+1) x]^{j} \frac{p_{n, \nu}(x)}{n} \\
& \quad \times \int_{0}^{\infty} p_{n, \nu-1}(t) \varepsilon(t, x)(t-x)^{r} d t+(-1)^{r} \frac{(n+r)!}{(n+1)!}(1+x)^{-n-r-1} \varepsilon(0, x)(-x)^{r} \\
= & R_{3}+R_{4} .
\end{aligned}
$$

Since $\varepsilon(t, x) \rightarrow 0$ as $t \rightarrow x$ for a given $\varepsilon>0$ there exists a $\delta>0$ such that $|\varepsilon(t, x)|<\varepsilon$ whenever $0<|t-x|<\delta$. Thus for some $M_{1}>0$, we can write

$$
\begin{aligned}
\left|R_{3}\right| \leq & M_{1} \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i-1} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)|\nu-(n+1) x|^{j}\left\{\varepsilon \int_{|t-x|<\delta} p_{n, \nu-1}(t)|t-x|^{r} d t\right. \\
& \left.\quad+\int_{|t-x| \geq \delta} p_{n, \nu-1}(t) M_{2} t^{\gamma} d t\right\} \\
= & R_{5}+R_{6},
\end{aligned}
$$

where

$$
M_{1}=\sup _{\substack{2 i+j \leq r \\ i, j \geq 0}} \frac{\left|Q_{i, j, r}(x)\right|}{\{x(1+x)\}^{r}}
$$

and M_{2} is independent of t.
Applying Schwarz's inequality for integration and summation respectively, we obtain

$$
\begin{aligned}
R_{5} \leq \varepsilon M_{1} & \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i-1} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)|\nu-(n+1) x|^{j}\left(\int_{0}^{\infty} p_{n, \nu-1}(t) d t\right)^{\frac{1}{2}} \\
& \times\left(\int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{2 r} d t\right)^{\frac{1}{2}} \\
\leq \varepsilon M_{1} & \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)\left(\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)[\nu-(n+1) x]^{2 j}\right)^{\frac{1}{2}} \\
& \times\left(\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{2 r} d t\right)^{\frac{1}{2}}
\end{aligned}
$$

Using Lemma 2.1 and Lemma 2.2, we get

$$
R_{5} \leq \varepsilon M_{1} \mathcal{O}\left(n^{j / 2}\right) \mathcal{O}\left(n^{-r / 2}\right)=\varepsilon \mathcal{O}(1)
$$

Again using the Schwarz inequality, Lemma 2.1 and Corollary 2.4, we obtain

$$
\begin{aligned}
& R_{6} \leq M_{2} \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i-1} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)|\nu-(n+1) x|^{j} \int_{|t-x| \geq \delta} p_{n, \nu-1}(t) t^{\gamma} d t \\
& \leq M_{2} \sum_{\substack{2 i+j \leq j \\
i, j \geq 0}} n^{i-1} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)|\nu-(n+1) x|^{j}\left(\int_{|t-x| \geq \delta} p_{n, \nu-1}(t) d t\right)^{\frac{1}{2}} \\
& \times\left(\int_{|t-x| \geq \delta} p_{n, \nu-1}(t) t^{2 \gamma} d t\right)^{\frac{1}{2}} \\
& \leq M_{2} \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i}\left(\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)[\nu-(n+1) x]^{2 j}\right)^{\frac{1}{2}} \\
& \times\left(\frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu-1}(t) t^{2 \gamma} d t\right)^{\frac{1}{2}} \\
&= \sum_{2 i+j \leq r} n^{i} \mathcal{O}\left(n^{j / 2}\right) \mathcal{O}\left(n^{-s / 2}\right)
\end{aligned}
$$

for any $s>0$.
Choosing $s>r$ we get $R_{6}=o(1)$. Thus, due to arbitrariness of $\varepsilon>0$, it follows that $R_{3}=o(1)$. Also $R_{4} \rightarrow 0$ as $n \rightarrow \infty$ and hence $R_{2}=o(1)$. Collecting the estimates of R_{1} and R_{2}, we get the required result.

The following result holds.
Theorem 3.2. Let $f \in C_{\gamma}[0, \infty), \gamma>0$. If $f^{(r+2)}$ exists at a point $x \in(0, \infty)$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n\left[B_{n}^{(r)}(f, x)\right. & \left.-f^{(r)}(x)\right] \\
& =r(r+1) f^{(r)}(x)+[2 x(1+r)+r] f^{(r+1)}(x)+x(1+x) f^{(r+2)}(x)
\end{aligned}
$$

Proof. Using Taylor's expansion of f, we have

$$
f(t)=\sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!}(t-x)^{i}+\varepsilon(t, x)(t-x)^{r+2},
$$

where $\varepsilon(t, x) \rightarrow 0$ as $t \rightarrow x$ and $\varepsilon(t, x)=\mathcal{O}\left((t-x)^{\beta}\right), t \rightarrow \infty$ for some $\beta>0$. Applying Lemma 2.2, we have

$$
\begin{aligned}
n\left[B_{n}^{(r)}(f, x)-f^{(r)}(x)\right]= & n\left[\sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!} \int_{0}^{\infty} W_{n}^{(r)}(x, t)(t-x)^{i} d t-f^{(r)}(x)\right] \\
& \quad+\left[n \int_{0}^{\infty} W_{n}^{(r)}(x, t) \varepsilon(t, x)(t-x)^{r+2} d t\right] \\
= & E_{1}+E_{2} .
\end{aligned}
$$

$$
\begin{aligned}
& E_{1}= n \sum_{i=0}^{r+2} \frac{f^{(i)}(x)}{i!} \sum_{j=0}^{i}\binom{i}{j}(-x)^{i-j} \int_{0}^{\infty} W_{n}^{(r)}(x, t) t^{j} d t-n f^{(r)}(x) \\
&=\frac{f^{(r)}(x)}{r!} n\left[B_{n}^{(r)}\left(t^{r}, x\right)-r!\right]+\frac{f^{(r+1)}(x)}{(r+1)!} n\left[(r+1)(-x) B_{n}^{(r)}\left(t^{r}, x\right)\right. \\
&\left.+B_{n}^{(r)}\left(t^{r+1}, x\right)\right]+\frac{f^{(r+2)}(x)}{(r+2)!} n\left[\frac{(r+2)(r+1)}{2} x^{2} B_{n}^{(r)}\left(t^{r}, x\right)\right. \\
&\left.+(r+2)(-x) B_{n}^{(r)}\left(t^{r+1}, x\right)+B_{n}^{(r)}\left(t^{r+2}, x\right)\right] .
\end{aligned}
$$

Therefore by applying Remark 2.3, we get

$$
\begin{aligned}
E_{1}=n f^{(r)}(x) & {\left[\frac{(n+r)!(n-r-1)!}{n!(n-1)!}-1\right] } \\
+ & n \frac{f^{(r+1)}(x)}{(r+1)!}\left[(r+1)(-x) r!\left\{\frac{(n+r)!(n-r-1)!}{n!(n-1)!}\right\}\right. \\
+ & \left.\left\{\frac{(n+r+1)!(n-r-2)!}{n!(n-1)!}(r+1)!x+r(r+1) \frac{(n+r)!(n-r-2)!}{n!(n-1)!} r!\right\}\right] \\
& +n \frac{f^{(r+2)}(x)}{(r+2)!}\left[\frac{(r+2)(r+1) x^{2}}{2} \cdot r!\frac{(n+r)!(n-r-1)!}{n!(n-1)!}\right. \\
& +(r+2)(-x)\left\{\frac{(n+r+1)!(n-r-2)!}{n!(n-1)!}(r+1)!x\right. \\
& \left.+r(r+1) \frac{(n+r)!(n-r-2)!}{n!(n-1)!} r!\right\} \\
& +\left\{\frac{(n+r+2)!(n-r-3)!}{n!(n-1)!} \frac{(r+2)!}{2} x^{2}\right. \\
& \left.\left.\quad+(r+1)(r+2) \frac{(n+r+1)!(n-r-3)!}{n!(n-1)!}(r+1)!x\right\}\right]+\mathcal{O}\left(n^{-2}\right) .
\end{aligned}
$$

In order to complete the proof of the theorem it is sufficient to show that $E_{2} \rightarrow 0$ as $n \rightarrow \infty$, which can be easily proved along the lines of the proof of Theorem 3.1 and by using Lemma 2.1. Lemma 2.2 and Lemma 2.5 .

Let us assume that $0<a<a_{1}<b_{1}<b<\infty$, for sufficiently small $\delta>0$, the m-th order Steklov mean $f_{m, \delta}(t)$ corresponding to $f \in C_{\gamma}[0, \infty)$ is defined by

$$
f_{m, \delta}(t)=\delta^{-m} \int_{-\frac{\delta}{2}}^{\frac{\delta}{2}} \int_{-\frac{\delta}{2}}^{\frac{\delta}{2}} \cdots \int_{-\frac{\delta}{2}}^{\frac{\delta}{2}}\left[f(t)-\Delta_{\eta}^{m} f(t)\right] \prod_{i=1}^{m} d t_{i}
$$

where $\eta=\frac{1}{m} \sum_{i=1}^{m} t_{i}, t \in[a, b]$ and $\Delta_{\eta}^{m} f(t)$ is the m-th forward difference with step length η.
It is easily checked (see e. g. [1], [4]) that
(i) $f_{m, \delta}$ has continuous derivatives up to order m on $[a, b]$;
(ii) $\left\|f_{m, \delta}^{(r)}\right\|_{C\left[a_{1}, b_{1}\right]} \leq M_{1} \delta^{-r} \omega_{r}\left(f, \delta, a_{1}, b_{1}\right), r=1,2,3, \ldots, m$;
(iii) $\left\|f-f_{m, \delta}\right\|_{C\left[a_{1}, b_{1}\right]} \leq M_{2} \omega_{m}(f, \delta, a, b)$;
(iv) $\left\|f_{m, \delta}\right\|_{C\left[a_{1}, b_{1}\right]} \leq M_{3}\|f\|_{\gamma}$,
where M_{i}, for $i=1,2,3$ are certain unrelated constants independent of f and δ. The $r-$ th order modulus of continuity $\omega_{r}(f, \delta, a, b)$ for a function f continuous on the interval $[a, b]$ is defined
by:

$$
\omega_{r}(f, \delta, a, b)=\sup \left\{\left|\Delta_{h}^{r} f(x)\right|:|h| \leq \delta ; x, x+h \in[a, b]\right\} .
$$

For $r=1, \omega_{1}(f, \delta)$ is written simply $\omega_{f}(\delta)$ or $\omega(f, \delta)$.
The following error estimation is in terms of higher order modulus of continuity:
Theorem 3.3. Let $f \in C_{\gamma}[0, \infty), \gamma>0$ and $0<a<a_{1}<b_{1}<b<\infty$. Then for all n sufficiently large

$$
\left\|B_{n}^{(r)}(f, *)-f^{(r)}(x)\right\|_{C\left[a_{1}, b_{1}\right]} \leq \max \left\{M_{3} \omega_{2}\left(f^{(r)}, n^{-1 / 2}, a, b\right), M_{4} n^{-1}\|f\|_{\gamma}\right\}
$$

where $M_{3}=M_{3}(r), M_{4}=M_{4}(r, f)$.
Proof. First by the linearity property, we have

$$
\begin{aligned}
\left\|B_{n}^{(r)}(f, *)-f^{(r)}\right\|_{C\left[a_{1}, b_{1}\right]} \leq & \left\|B_{n}^{(r)}\left(\left(f-f_{2, \delta}\right), *\right)\right\|_{C\left[a_{1}, b_{1}\right]}+\left\|B_{n}^{(r)}\left(f_{2, \delta}, *\right)-f_{2, \delta}^{(r)}\right\|_{C\left[a_{1}, b_{1}\right]} \\
& +\left\|f^{(r)}-f_{2, \delta}^{(r)}\right\|_{C\left[a_{1}, b_{1}\right]} \\
=: & A_{1}+A_{2}+A_{3} .
\end{aligned}
$$

By property (iii) of the Steklov mean, we have

$$
A_{3} \leq C_{1} \omega_{2}\left(f^{(r)}, \delta, a, b\right)
$$

Next using Theorem 3.2, we have

$$
A_{2} \leq C_{2} n^{-(k+1)} \sum_{j=r}^{r+2}\left\|f_{2, \delta}^{(j)}\right\|_{C[a, b]}
$$

By applying the interpolation property due to Goldberg and Meir [2] for each $j=r, r+1$, $r+2$, we have

$$
\left\|f_{2, \delta}^{(j)}\right\|_{C[a, b]} \leq C_{3}\left\{\left\|f_{2, \delta}\right\|_{C[a, b]}+\left\|f_{2, \delta}^{(r+2)}\right\|_{C[a, b]}\right\}
$$

Therefore by applying properties (ii) and (iv) of the Steklov mean, we obtain

$$
A_{2} \leq C_{4} n^{-1}\left\{\|f\|_{\gamma}+\delta^{-2} \omega_{2}\left(f^{(r)}, \delta\right)\right\}
$$

Finally we estimate A_{1}, choosing a^{*}, b^{*} satisfying the condition $0<a<a^{*}<a_{1}<b_{1}<$ $b^{*}<b<\infty$. Also let $\psi(t)$ denote the characteristic function of the interval $\left[a^{*}, b^{*}\right]$, then

$$
\begin{aligned}
A_{1} \leq \| B_{n}^{(r)}(& \left.\psi(t)\left(f(t)-f_{2, \delta}(t)\right), *\right) \|_{C\left[a_{1}, b_{1}\right]} \\
& \quad+\left\|B_{n}^{(r)}\left((1-\psi(t))\left(f(t)-f_{2, \delta}(t)\right), *\right)\right\|_{C\left[a_{1}, b_{1}\right]} \\
= & A_{4}+A_{5} .
\end{aligned}
$$

We may note here that to estimate A_{4} and A_{5}, it is enough to consider their expressions without the linear combinations. By Lemma 2.6, we have

$$
\begin{aligned}
B_{n}^{(r)}(\psi(t) & \left.\left(f(t)-f_{2, \delta}(t)\right), x\right) \\
& =\frac{(n-r-1)!(n+r-1)!}{n!(n-1)!} \sum_{\nu=0}^{\infty} p_{n+r, \nu}(x) \int_{0}^{\infty} p_{n-1, \nu+r-1}(t) f^{(r)}(t) d t .
\end{aligned}
$$

Hence

$$
\left\|B_{n}^{(r)}\left(\psi(t)\left(f(t)-f_{2, \delta}(t)\right), *\right)\right\|_{C[a, b]} \leq C_{5}\left\|f^{(r)}-f_{2, \delta}^{(r)}\right\|_{C\left[a^{*}, b^{*}\right]}
$$

Now for $x \in\left[a_{1}, b_{1}\right]$ and $t \in[0, \infty) \backslash\left[a^{*}, b^{*}\right]$, we choose a $\delta_{1}>0$ satisfying $|t-x| \geq \delta_{1}$. Therefore by Lemma 2.5 and the Schwarz inequality, we have

$$
\begin{aligned}
& I=\mid B_{n}^{r r}(\left.(1-\psi(t))\left(f(t)-f_{2, \delta}(t)\right), x\right) \mid \\
& \leq \sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i} \frac{\left|Q_{i, j, r}(x)\right|}{x^{r}} \\
& \times \frac{1}{n} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)|\nu-(n+1) x|^{j} \int_{0}^{\infty} p_{n, \nu-1}(t)(1-\psi(t))\left|f(t)-f_{2, \delta}(t)\right| d t \\
&+(1+x)^{-n-1}|(-n-1)(-n) \cdots(-n-r)|(1-\psi(0))\left|f(0)-f_{2, \delta}(0)\right| \\
& \leq C_{6}\|f\|_{\gamma}\left\{\sum_{\substack{2 i+j \leq r \\
i, j \geq 0}} n^{i-1} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)|\nu-(n+1) x|^{j}\right. \\
&\left.\times \int_{|t-x| \geq \delta_{1}} p_{n, \nu-1}(t) d t+(1+x)^{-n-1}|(-n-1)(-n) \cdots(-n-r)|\right\} \\
& \leq C_{6}\|f\|_{\gamma}\left\{\delta_{1}^{-2 s} \sum_{\substack{2 i+j \leq r}}^{n_{i, j \geq 0}} n^{i-1} \sum_{\nu=1}^{\infty} p_{n, \nu}(x)|\nu-(n+1) x|^{j}\left(\int_{0}^{\infty} p_{n, \nu-1}(t) d t\right)^{\frac{1}{2}}\right. \\
&\left.\times\left(\int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{4 s} d t\right)^{\frac{1}{2}}+(1+x)^{-n-1}|(-n-1)(-n) \cdots(-n-r)|\right\} \\
& \leq C_{6}\|f\|_{\gamma} \delta_{1}^{-2 s} \\
& \times \sum_{2 i+j \leq r}^{2 i} n^{i}\left\{\frac{1}{n} \sum_{\nu=0}^{\infty} p_{n, \nu}(x)[\nu-(n+1) x]^{2 j}-(1+x)^{-n-1}-\{-(n+1) x\}^{2 j}\right\} \\
& \times\left\{\frac{1}{n} \sum_{\nu=0}^{\infty} p_{n, \nu}^{\frac{1}{2}}(x) \int_{0}^{\infty} p_{n, \nu-1}(t)(t-x)^{4 s} d t-(1+x)^{-n-1}(-x)^{4 s}\right. \\
&\left.-(1+x)^{-n-1}(-x)^{4 s}\right\}+C_{6}\|f\|_{\gamma}(1+x)^{-n-1}|(-n-1)(-n) \cdots(-n-r)| .
\end{aligned}
$$

Hence by Lemma 2.1 and Lemma 2.2, we have

$$
I \leq C_{7}\|f\|_{\gamma} \delta_{1}^{-2 s} \mathcal{O}\left(n^{\left(i+\frac{j}{2}-s\right)}\right) \leq C_{7} n^{-q}\|f\|_{\gamma}, q=s-\frac{r}{2},
$$

where the last term vanishes as $n \rightarrow \infty$. Now choosing q satisfying $q \geq 1$, we obtain

$$
I \leq C_{7} n^{-1}\|f\|_{\gamma}
$$

Therefore by property (iii) of the Steklov mean, we get

$$
\begin{aligned}
A_{1} & \leq C_{8}\left\|f^{(r)}-f_{2, \delta}^{(r)}\right\|_{C\left[a^{*}, b^{*}\right]}+C_{7} n^{-1}\|f\|_{\gamma} \\
& \leq C_{9} \omega_{2}\left(f^{(r)}, \delta, a, b\right)+C_{7} n^{-1}\|f\|_{\gamma} .
\end{aligned}
$$

Choosing $\delta=n^{-1 / 2}$, the theorem follows.

References

[1] G. FREUD AND V. POPOV, On approximation by spline functions, Proc. Conf. on Constructive Theory Functions, Budapest (1969), 163-172.
[2] S. GOLDBERG AND V. MEIR, Minimum moduli of ordinary differential operators, Proc. London Math. Soc., 23 (1971), 1-15.
[3] V. GUPTA And G.S. SRIVASTAVA, Convergence of derivatives by summation-integral type operators, Revista Colombiana de Matematicas, 29 (1995), 1-11.
[4] E. HEWITT and K. STROMBERG, Real and Abstract Analysis, McGraw Hill, New York, 1956.
[5] H.M. SRIVASTAVA AND V. GUPTA, A certain family of summation integral type operators, Mathematical and Computer Modelling, 37 (2003), 1307-1315.

