ON INVERSES OF TRIANGULAR MATRICES WITH MONOTONE ENTRIES

KENNETH S. BERENHAUT AND PRESTON T. FLETCHER

Department of Mathematics
Wake Forest University
Winston-Salem, NC 27106

berenhks@wfu.edu
URL: http://www.math.wfu.edu/Faculty/berenhaut.html
fletpt1@wfu.edu
Received 26 August, 2004; accepted 24 May, 2005
Communicated by C.-K. Li

Abstract

This note employs recurrence techniques to obtain entry-wise optimal inequalities for inverses of triangular matrices whose entries satisfy some monotonicity constraints. The derived bounds are easily computable.

Key words and phrases: Explicit bounds, Triangular matrix, Matrix inverse, Monotone entries, Off-diagonal decay, Recurrence relations.
2000 Mathematics Subject Classification. 15A09, 39A10, 26A48.

1. Introduction

Much work has been done in the recent past to understand off-diagonal decay properties of structured matrices and their inverses (cf. Benzi and Golub [1], Demko, Moss and Smith [4], Eijkhout and Polman [5], Jaffard [6], Nabben [7] and [8], Peluso and Politi [9], Robinson and Wathen [10], Strohmer [11], Vecchio [12] and the references therein).

This paper studies nonnegative triangular matrices with off-diagonal decay. In particular, let

$$
\boldsymbol{L}_{n}=\left[\begin{array}{ccccc}
l_{1,1} & & & & \\
l_{2,1} & l_{2,2} & & & \\
l_{3,1} & l_{3,2} & l_{3,3} & & \\
\vdots & \vdots & \vdots & \ddots & \\
l_{n, 1} & l_{n, 2} & l_{n, 3} & \cdots & l_{n, n}
\end{array}\right]
$$

[^0]be an invertible lower triangular matrix, and
\[

\boldsymbol{X}_{n}=\boldsymbol{L}_{n}^{-1}=\left[$$
\begin{array}{ccccc}
x_{1,1} & & & & \\
x_{2,1} & x_{2,2} & & & \\
x_{3,1} & x_{3,2} & x_{3,3} & & \\
\vdots & \vdots & \vdots & \ddots & \\
x_{n, 1} & x_{n, 2} & x_{n, 3} & \cdots & x_{n, n}
\end{array}
$$\right]
\]

be its inverse.
We are interested in obtaining bounds on the entries in \boldsymbol{X}_{n} under the row-wise monotonicity assumption

$$
\begin{equation*}
0 \leq l_{i, 1} \leq l_{i, 2} \leq \cdots \leq l_{i, i-1} \leq l_{i, i} \tag{1.1}
\end{equation*}
$$

for $2 \leq i \leq n$.
As an added generalization, we will consider $\left[l_{i, j}\right]$ satisfying

$$
\begin{equation*}
0 \leq \frac{l_{i, 1}}{l_{i, i}} \leq \frac{l_{i, 2}}{l_{i, i}} \leq \cdots \leq \frac{l_{i, i-1}}{l_{i, i}} \leq \kappa_{i-1} \tag{1.2}
\end{equation*}
$$

for some nondecreasing sequence $\boldsymbol{\kappa}=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right)$.
The paper proceeds as follows. Section 2 contains some recurrence-type lemmas, while the main result, Theorem 3.1, and its proof are contained in Section 3. The paper closes with some illustrative examples.

2. Preliminary Lemmas

In establishing our main results, we will employ recurrence techniques. In particular, suppose $\left\{b_{i}\right\}$ and $\left\{\alpha_{i, j}\right\}$ satisfy the linear recurrence

$$
\begin{equation*}
b_{i}=\sum_{k=0}^{i-1}\left(-\alpha_{i, k}\right) b_{k}, \quad(1 \leq i \leq n) \tag{2.1}
\end{equation*}
$$

with $b_{0}=1$ and

$$
\begin{equation*}
0 \leq \alpha_{i, 0} \leq \alpha_{i, 1} \leq \alpha_{i, 2} \leq \cdots \leq \alpha_{i, i-1} \leq A_{i} \tag{2.2}
\end{equation*}
$$

for $i \geq 1$.
We will employ the following lemma, which reduces the scope of consideration in bounding solutions to (2.1).
Lemma 2.1. Suppose that $\left\{b_{i}\right\}$ and $\left\{\alpha_{i, j}\right\}$ satisfy (2.1) and (2.2). Then, there exists a sequence $a_{1}, a_{2}, \ldots, a_{n}$, with $0 \leq a_{i} \leq i$ for $1 \leq i \leq n$, such that $\left|b_{n}\right| \leq\left|d_{n}\right|$, where $\left\{d_{i}\right\}$ satisfies $d_{0}=1$, and for $1 \leq i \leq n$,

$$
d_{i}=\left\{\begin{array}{ll}
\sum_{j=a_{i}}^{i-1}\left(-A_{i}\right) d_{j}, & \text { if } a_{i}<i \tag{2.3}\\
0, & \text { otherwise }
\end{array} .\right.
$$

In proving Lemma 2.1, we will refer to the following result on inner products.
Lemma 2.2. Suppose that $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)^{\prime}$ and $\boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right)^{\prime}$ are n-vectors with

$$
\begin{equation*}
0 \geq p_{1} \geq p_{2} \geq \cdots \geq p_{n} \geq-A \tag{2.4}
\end{equation*}
$$

Define

$$
\begin{equation*}
\boldsymbol{p}_{n}^{*}(\nu, A)=(\overbrace{0,0, \ldots, 0}^{\nu}, \overbrace{-A, \ldots,-A,-A}^{n-\nu}) \tag{2.5}
\end{equation*}
$$

for $0 \leq \nu \leq n$. Then,

$$
\begin{equation*}
\min _{0 \leq \nu \leq n}\left\{\boldsymbol{p}_{n}^{*}(\nu, A) \cdot \boldsymbol{q}\right\} \leq \boldsymbol{p} \cdot \boldsymbol{q} \leq \max _{0 \leq \nu \leq n}\left\{\boldsymbol{p}_{n}^{*}(\nu, A) \cdot \boldsymbol{q}\right\}, \tag{2.6}
\end{equation*}
$$

where $\boldsymbol{p} \cdot \boldsymbol{q}$ denotes the standard dot product $\sum_{i=1}^{n} p_{i} q_{i}$.
Proof. Suppose \boldsymbol{p} is of the form

$$
\begin{equation*}
(p_{1}, \ldots, p_{j}, \overbrace{-k, \ldots,-k}^{e_{1}}, \overbrace{-A, \ldots,-A}^{e_{2}}), \tag{2.7}
\end{equation*}
$$

with $0 \geq p_{1} \geq p_{2} \geq \cdots \geq p_{j}>-k>-A, e_{1} \geq 1$ and $e_{2} \geq 0$. First, assume that $\boldsymbol{p} \cdot \boldsymbol{q}>0$, and consider $S=\sum_{i=j+1}^{e_{1}+j} q_{i}$. If $S<0$ then, since $k<A$,

$$
\begin{equation*}
(p_{1}, p_{2}, \ldots, p_{j-1}, p_{j}, \overbrace{-A, \ldots,-A}^{e_{1}} \overbrace{-A, \ldots,-A}^{e_{2}}) \cdot \boldsymbol{q} \geq \boldsymbol{p} \cdot \boldsymbol{q} . \tag{2.8}
\end{equation*}
$$

Otherwise, since $-k<p_{j}$,

$$
\begin{equation*}
(p_{1}, p_{2}, \ldots, p_{j-1}, p_{j}, \overbrace{p_{j}, \ldots, p_{j}}^{e_{1}}, \overbrace{-A, \ldots,-A}^{e_{2}}) \cdot \boldsymbol{q} \geq \boldsymbol{p} \cdot \boldsymbol{q} . \tag{2.9}
\end{equation*}
$$

In either case, there is a vector of the form in (2.7) with strictly less distinct values, whose inner product with \boldsymbol{q} is at least as large as $\boldsymbol{p} \cdot \boldsymbol{q}$. Inductively, there exists a vector of the form in (2.7) with $e_{2}+e_{1}=n$, with as large, or larger, inner product. Hence, we have reduced to the case where $\boldsymbol{p}=(\overbrace{-k, \ldots,-k}^{e_{1}}, \overbrace{-A, \ldots,-A}^{e_{2}})$, where $e_{1}=0$ and $e_{n}=0$ are permissible. If $k=0$ or $e_{1}=0$, then $\boldsymbol{p}=\boldsymbol{p}_{n}^{*}\left(e_{1}, A\right)$. Otherwise, consider $S=\sum_{i=1}^{e_{1}} q_{i}$. If $S<0$, then

$$
\begin{equation*}
\boldsymbol{p}_{n}^{*}(0, A) \cdot \boldsymbol{q} \geq \boldsymbol{p} \cdot \boldsymbol{q} \tag{2.10}
\end{equation*}
$$

If $S \geq 0$,

$$
\begin{equation*}
\boldsymbol{p}_{n}^{*}\left(e_{1}, A\right) \cdot \boldsymbol{q} \geq \boldsymbol{p} \cdot \boldsymbol{q} . \tag{2.11}
\end{equation*}
$$

The result for the case $\boldsymbol{p} \cdot \boldsymbol{q}>0$ now follows from (2.10) and (2.11).
The case when $\boldsymbol{p} \cdot \boldsymbol{q} \leq 0$ is handled similarly, and the lemma follows.
We now turn to a proof of Lemma 2.1.
Proof of Lemma 2.1. The proof, here, involves applying Lemma 2.2 to successively "scale" the rows of the coefficient matrix

$$
\left[\begin{array}{cccc}
-\alpha_{1,0} & 0 & \cdots & 0 \\
-\alpha_{2,0} & -\alpha_{2,1} & \ddots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_{n, 0} & -\alpha_{n, 1} & \cdots & -\alpha_{n, n-1}
\end{array}\right]
$$

while not decreasing the value of $\left|b_{n}\right|$ at any step.
First, define the sequences

$$
\begin{aligned}
\overline{\boldsymbol{\alpha}}_{i} & =\left(-\alpha_{i, 0}, \ldots,-\alpha_{i, i-1}\right) \text { and } \\
\boldsymbol{b}^{k, j} & =\left(b_{k}, \ldots, b_{j}\right),
\end{aligned}
$$

for $0 \leq k \leq j \leq n-1$ and $1 \leq i \leq n$.
Now, note that applying Lemma 2.2 to the vectors $\boldsymbol{p}=\overline{\boldsymbol{\alpha}}_{n}$ and $\boldsymbol{q}=\boldsymbol{b}^{0, n-1}$ yields a vector $\boldsymbol{p}^{*}\left(\nu_{n}, A_{n}\right)$ (as in (2.5) such that either

$$
\begin{equation*}
\boldsymbol{p}^{*}\left(\nu_{n}, A_{n}\right) \cdot \boldsymbol{b}^{0, n-1} \geq \overline{\boldsymbol{\alpha}}_{n} \cdot \boldsymbol{b}^{0, n-1}=b_{n}>0 \tag{2.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{p}^{*}\left(\nu_{n}, A_{n}\right) \cdot \boldsymbol{b}^{0, n-1} \leq \overline{\boldsymbol{\alpha}}_{n} \cdot \boldsymbol{b}^{0, n-1}=b_{n} \leq 0 \tag{2.13}
\end{equation*}
$$

Hence, suppose that the entries of the $k^{t h}$ through $n^{\text {th }}$ rows of the coefficient matrix are of the form in (2.5), and express b_{n} as a linear combination of $b_{1}, b_{2}, \ldots, b_{k}$ i.e.

$$
\begin{align*}
b_{n} & =\sum_{i=1}^{k} C_{i}^{k} b_{i} \\
& =C_{k}^{k} b_{k}+\sum_{i=1}^{k-1} C_{i}^{k} b_{i} \tag{2.14}
\end{align*}
$$

Now, suppose $C_{k}^{k}>0$. As before, applying Lemma 2.2 to the vectors $\boldsymbol{p}=\overline{\boldsymbol{\alpha}}_{k}$ and $\boldsymbol{q}=\boldsymbol{b}^{0, k-1}$ yields a vector $\boldsymbol{p}_{k}^{*}\left(\nu_{k}, A_{k}\right)$, such that

$$
\begin{equation*}
\boldsymbol{p}_{k}^{*}\left(\nu_{k}, A_{k}\right) \cdot \boldsymbol{b}^{0, k-1} \geq \overline{\boldsymbol{\alpha}}_{k} \cdot \boldsymbol{b}^{0, k-1}=b_{k} . \tag{2.15}
\end{equation*}
$$

Similarly, if $C_{k}^{k} \leq 0$, we obtain a vector $\boldsymbol{p}_{k}^{*}\left(\nu_{k}, A_{k}\right)$, such that

$$
\begin{equation*}
\boldsymbol{p}_{k}^{*}\left(\nu_{k}, A_{k}\right) \cdot \boldsymbol{b}^{0, k-1} \leq \overline{\boldsymbol{\alpha}}_{k} \cdot \boldsymbol{b}^{0, k-1}=b_{k} . \tag{2.16}
\end{equation*}
$$

Using the respective entries in $\boldsymbol{p}_{k}^{*}\left(\nu_{k}, A_{k}\right)$ in place of those in $\overline{\boldsymbol{\alpha}}_{k}$ in (2.1) will not decrease the value of b_{n}. This completes the induction for the case $b_{n}>0$; the case $b_{n} \leq 0$ is similar, and the lemma follows.

Remark 2.3. A version of Lemma 2.4 for $A_{i} \equiv 1$ was recently applied in proving that all symmetric Toeplitz matrices generated by monotone convex sequences have off-diagonal decay preserved through triangular decompositions (see [2]).

Now, For $\boldsymbol{a}=\left(A_{1}, A_{2}, A_{3}, \ldots\right)$, with

$$
\begin{equation*}
0 \leq A_{1} \leq A_{2} \leq A_{3} \leq \cdots \tag{2.17}
\end{equation*}
$$

define

$$
\begin{equation*}
Z_{i}(\boldsymbol{a}) \stackrel{\text { def }}{=} \max \left\{\prod_{v=j}^{i} A_{v}: 1 \leq j \leq i\right\} \tag{2.18}
\end{equation*}
$$

for $i \geq 1$.
We have the following result on bounds for linear recurrences.
Lemma 2.4. Suppose that $\boldsymbol{a}=\left(A_{j}\right)$ satisfies the monotonicity constraint in 2.17. Then, for $i \geq 1$,

$$
\begin{equation*}
\sup \left\{\left|b_{i}\right|:\left\{b_{j}\right\} \text { and }\left\{\alpha_{i, j}\right\} \text { satisfy (2.1) and (2.2) }\right\}=Z_{i}(\boldsymbol{a}) . \tag{2.19}
\end{equation*}
$$

Proof. Suppose that $\left\{b_{i}\right\}$ satisfies (2.1) and 2.2), and set $\zeta_{i}=Z_{i}(\boldsymbol{a})$ and $M_{i}=\max \left\{1, \zeta_{i}\right\}$, for $i \geq 1$. From (2.18), we have

$$
\begin{equation*}
A_{i+1} M_{i}=\zeta_{i+1} \tag{2.20}
\end{equation*}
$$

for $i \geq 1$. By Lemma 2.1, we may find sequences $\left\{d_{i}\right\}$ and $\left\{a_{i}\right\}$ satisfying (2.3) such that

$$
\begin{equation*}
\left|d_{n}\right| \geq\left|b_{n}\right| \tag{2.21}
\end{equation*}
$$

We will show that $\left\{d_{i}\right\}$ satisfies the inequality

$$
\begin{equation*}
\left|d_{l}+d_{l+1}+\cdots+d_{i}\right| \leq M_{i} \tag{2.22}
\end{equation*}
$$

for $0 \leq l \leq i$.

Note that $\sqrt{2.22)}$ (for $i=n-1$) and (2.3) imply that $d_{n}=0$ or $a_{n} \leq n-1$ and

$$
\begin{align*}
\left|d_{n}\right| & =\left|\sum_{j=a_{n}}^{n-1}\left(-A_{n}\right) d_{j}\right| \\
& =A_{n}\left|\sum_{j=a_{n}}^{n-1} d_{j}\right| \\
& \leq A_{n} M_{n-1} \\
& =\zeta_{n} . \tag{2.22}
\end{align*}
$$

Since $d_{0}=1, d_{1} \in\left\{0,-A_{1}\right\}$ and

$$
\begin{align*}
\max \left\{\left|d_{1}\right|,\left|d_{0}+d_{1}\right|\right\} & =\max \left\{1, A_{1},\left|1-A_{1}\right|\right\} \\
& =\max \left\{1, A_{1}\right\} \\
& =M_{1}, \tag{2.24}
\end{align*}
$$

i.e. the inequality in 2.22 holds for $i=1$. Hence, suppose that 2.22 holds for $i<N$. Rewriting d_{N}, with $v=a_{N}$, we have for $0 \leq x \leq N-1$,
$d_{x}+d_{x+1}+\cdots+d_{N}=\left(d_{x}+d_{x+1}+\cdots+d_{N-1}\right)-A_{n}\left(d_{v}+\cdots+d_{N-1}\right)$

$$
=\left\{\begin{array}{ll}
\left(1-A_{N}\right)\left(d_{v}+\cdots+d_{N-1}\right)+\left(d_{x}+\cdots+d_{v-1}\right), & \text { if } v>x \tag{2.25}\\
\left(1-A_{N}\right)\left(d_{x}+\cdots+d_{N-1}\right)-A_{N}\left(d_{v}+\cdots+d_{x-1}\right), & \text { if } v \leq x
\end{array} .\right.
$$

Let

$$
S_{1}=\left\{\begin{array}{ll}
d_{v}+\cdots+d_{N-1}, & \text { if } v>x \\
d_{x}+\cdots+d_{N-1}, & \text { if } v \leq x
\end{array},\right.
$$

and

$$
S_{2}=\left\{\begin{array}{ll}
d_{x}+\cdots+d_{v-1}, & \text { if } v>x \\
d_{v}+\cdots+d_{x-1}, & \text { if } v \leq x
\end{array} .\right.
$$

In showing that $\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| \leq M_{N}$, we will consider several cases depending on whether $A_{N}>1$ or $A_{N} \leq 1$, and the signs of S_{1} and S_{2}.
Case $1\left(A_{N}>1\right.$ and $\left.S_{1} S_{2}>0\right)$
(1) $v>x$.

$$
\begin{align*}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}+S_{2}\right| \\
& \leq \max \left\{A_{N}\left|S_{1}\right|, A_{N}\left|S_{2}\right|\right\} \\
& \leq A_{N} \max \left\{M_{N-1}, M_{v-1}\right\} \\
& \leq A_{N} M_{N-1} \\
& =\zeta_{N} \\
& =M_{N}, \tag{2.26}
\end{align*}
$$

where the first inequality follows since $\left(1-A_{N}\right) S_{1}$ and S_{2} are of opposite signs and $A_{n}>1$. The second inequality follows from induction. The last equalities are direct consequences of the definition of M_{N} and the fact that $A_{N}>1$. The monotonicity of $\left\{M_{i}\right\}$ is employed in obtaining the third inequality.
(2) $v \leq x$.

$$
\begin{aligned}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}-A_{N} S_{2}\right| \\
& \leq\left|A_{N} S_{1}+A_{N} S_{2}\right| \\
& =A_{N}\left|S_{1}+S_{2}\right| \\
& =A_{N}\left|d_{v}+d_{v+1}+\cdots+d_{N-1}\right| \\
& \leq A_{N} M_{N-1} \\
& =\zeta_{N} \\
& =M_{N} .
\end{aligned}
$$

In (2.27), the first inequality follows since $\left(1-A_{N}\right) S_{1}$ and $-A_{N} S_{2}$ are of the same sign.
Case $2\left(A_{N}>1\right.$ and $\left.S_{1} S_{2} \leq 0\right)$
(1) $v>x$.

$$
\begin{align*}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}+S_{2}\right| \\
& =\left|-A_{N} S_{1}+\left(S_{1}+S_{2}\right)\right| . \tag{2.28}
\end{align*}
$$

If S_{1} and $S_{1}+S_{2}$ are of the same sign, then

$$
\begin{aligned}
\left|-A_{N} S_{1}+\left(S_{1}+S_{2}\right)\right| & \leq \max \left\{A_{N}\left|S_{1}\right|,\left|S_{1}+S_{2}\right|\right\} \\
& \leq A_{N} M_{N-1} \\
& =M_{N}
\end{aligned}
$$

Otherwise,

$$
\begin{align*}
\left|-A_{N} S_{1}+\left(S_{1}+S_{2}\right)\right| & \leq\left|-A_{N} S_{1}+A_{N}\left(S_{1}+S_{2}\right)\right| \\
& =A_{N}\left|S_{2}\right| \\
& \leq A_{N} M_{N-1} \\
& =M_{N} . \tag{2.30}
\end{align*}
$$

(2) $v \leq x$.

$$
\begin{align*}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}-A_{N} S_{2}\right| \\
& \leq \max \left\{A_{N}\left|S_{1}\right|, A_{N}\left|S_{2}\right|\right\} \\
& \leq A_{N} M_{N-1} \\
& =M_{N} \tag{2.31}
\end{align*}
$$

Case $3\left(A_{N} \leq 1\right.$ and $\left.S_{1} S_{2}>0\right)$
Note that for $A_{N} \leq 1, M_{i}=1$ for all i.
(1) $v>x$.

$$
\begin{align*}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}+S_{2}\right| \\
& \leq\left|S_{1}+S_{2}\right| \\
& \leq M_{N-1} \\
& =M_{N} . \tag{2.32}
\end{align*}
$$

(2) $v \leq x$.

$$
\begin{align*}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}-A_{N} S_{2}\right| \\
& \leq \max \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\} \\
& \leq M_{N-1} \\
& =M_{N} . \tag{2.33}
\end{align*}
$$

Case $4\left(A_{N} \leq 1\right.$ and $\left.S_{1} S_{2} \leq 0\right)$
(1) $v>x$.

$$
\begin{align*}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}+S_{2}\right| \\
& \leq \max \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\} \\
& \leq \max \left\{M_{N-1}, M_{v-1}\right\} \\
& =M_{N} . \tag{2.34}
\end{align*}
$$

(2) $v \leq x$.

$$
\begin{align*}
\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| & =\left|\left(1-A_{N}\right) S_{1}-A_{N} S_{2}\right| \\
& \leq\left|S_{1}+S_{2}\right| \\
& \leq M_{N-1} \\
& =M_{N} . \tag{2.35}
\end{align*}
$$

Thus, in all cases $\left|d_{x}+d_{x+1}+\cdots+d_{N}\right| \leq M_{N}$ and hence by (2.23), $\left|d_{N}\right| \leq \zeta_{N}$. Equation (2.19) now follows since, for $1 \leq h \leq n,\left|b_{n}\right|=A_{h} A_{h+1} \cdots A_{n}$ is attained for $\left[\alpha_{i, j}\right]$ defined by

$$
\alpha_{i, j}= \begin{cases}-A_{h}, & \text { if } i=h \tag{2.36}\\ -A_{i}, & \text { if } i>h, j=i \\ 0, & \text { otherwise }\end{cases}
$$

We close this section with an elementary result (without proof) which will serve to connect entries in \boldsymbol{L}_{n}^{-1} with solutions to (2.1).

Lemma 2.5. Suppose $\boldsymbol{M}=\left[m_{i, j}\right]_{n \times n}$ and $\boldsymbol{y}=\left[y_{i}\right]_{n \times 1}$, satisfy $\boldsymbol{M} \boldsymbol{y}=(1,0, \ldots, 0)^{\prime}$, with \boldsymbol{M} an invertible lower triangular matrix. Then, $y_{1}=1 / m_{1,1}$, and

$$
\begin{equation*}
y_{i}=\sum_{j=1}^{i-1}\left(-\frac{m_{i, j}}{m_{i, i}}\right) y_{j}, \tag{2.37}
\end{equation*}
$$

for $2 \leq i \leq n$.

3. The Main Result

We are now in a position to prove our main result.
Theorem 3.1. Suppose $\boldsymbol{\kappa}=\left(\kappa_{i}\right)$ satisfies

$$
\begin{equation*}
0 \leq \kappa_{1} \leq \kappa_{2} \leq \kappa_{3} \leq \cdots \tag{3.1}
\end{equation*}
$$

and set

$$
\begin{equation*}
S \stackrel{\text { def }}{=}\left\{i: \kappa_{i}>1\right\} \tag{3.2}
\end{equation*}
$$

As well, define $\left\{W_{i, j}\right\}$ by

$$
\begin{equation*}
W_{i, j} \stackrel{\text { def }}{=} \prod_{v \in(S \cap\{j, j+1, \ldots, i-2\}) \cup\{i-1\}} \kappa_{v} . \tag{3.3}
\end{equation*}
$$

Then, for $1 \leq i \leq n,\left|x_{i, i}\right| \leq 1 / l_{i, i}$ and for $1 \leq j<i \leq n$,

$$
\begin{equation*}
\left|x_{i, j}\right| \leq \frac{W_{i, j}}{l_{j, j}} \tag{3.4}
\end{equation*}
$$

Proof. Suppose that $n \geq 1$ and $\boldsymbol{X}_{n}=\boldsymbol{L}_{n}^{-1}$. Solving for the sub-diagonal entries in the $p^{t h}$ column of \boldsymbol{X}_{n} leads to the matrix equation

$$
\left(\begin{array}{cccc}
l_{p, p} & & & \\
l_{p+1, p} & l_{p+1, p+1} & & \\
\vdots & \vdots & \ddots & \\
l_{n, p} & l_{n, p+1} & \cdots & l_{n, n}
\end{array}\right)\left(\begin{array}{c}
x_{p, p} \\
x_{p+1, p} \\
\vdots \\
x_{n, p}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) .
$$

Applying Lemma 2.5 gives $x_{p, p}=1 / l_{p, p}$, and

$$
\begin{equation*}
x_{p+i, p}=\sum_{j=0}^{i-1}\left(-\frac{l_{p+i, p+j}}{l_{p+i, p+i}}\right) x_{p+j, p}, \tag{3.5}
\end{equation*}
$$

for $1 \leq i \leq n-p$.
Now, note that (1.2) gives

$$
\begin{equation*}
0 \leq \frac{l_{p+i, p}}{l_{p+i, p+i}} \leq \frac{l_{p+i, p+1}}{l_{p+i, p+i}} \leq \cdots \leq \frac{l_{p+i, p+i-1}}{l_{p+i, p+i}} \leq \kappa_{p+i-1} . \tag{3.6}
\end{equation*}
$$

Hence by Lemma 2.4 .

$$
\begin{align*}
\left|x_{p+i, p}\right| & \leq\left|x_{p, p}\right| Z_{i}\left(\left(\kappa_{p}, \kappa_{p+1}, \ldots, \kappa_{p+i-1}\right)\right) \\
& =\frac{1}{l_{p, p}} W_{p+i, p}, \tag{3.7}
\end{align*}
$$

for $1 \leq i \leq n-p$, and the theorem follows.

4. Examples

In this section, we provide examples to illustrate some of the structural information contained in Theorem 3.1 .

Example 4.1 (Equally spaced A_{i}). Suppose that $A_{i}=C i$ for $i \geq 1$, where $C>0$. Then, for $n \geq 1$,

$$
Z_{n}(\boldsymbol{a})= \begin{cases}n C, & C \in\left(0, \frac{1}{n-1}\right] \\ (n)_{k} C^{k}, & C \in\left(\frac{1}{n-k+1}, \frac{1}{n-k}\right],(2 \leq k \leq n-1) \\ n!C^{n}, & C \in(1, \infty)\end{cases}
$$

where $(n)_{k}=n(n-1) \cdots(n-k+1)$.

Consider the matrix

$$
\boldsymbol{L}_{7}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.25 & 1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.5 & 1 & 0 & 0 & 0 & 0 \\
0.75 & 0.75 & 0.75 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1.25 & 1.25 & 1.25 & 1.25 & 1 & 0 \\
1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1
\end{array}\right)
$$

with (rounded to three decimal places)

$$
X_{7}=\boldsymbol{L}_{7}^{-1}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.1}\\
-0.25 & 1 & 0 & 0 & 0 & 0 & 0 \\
-0.375 & -0.5 & 1 & 0 & 0 & 0 & 0 \\
-0.281 & -0.375 & -0.75 & 1 & 0 & 0 & 0 \\
-0.094 & -0.125 & -0.25 & -1 & 1 & 0 & 0 \\
1.25 & 0 & 0 & 0 & -1.25 & 1 & 0 \\
-1.875 & 0 & 0 & 0 & 0.375 & -1.5 & 1
\end{array}\right) .
$$

Applying Theorem 3.1, with $\boldsymbol{\kappa}=(.25, .50, .75,1.00,1.25,1.50, \ldots)$ gives the entry-wise bounds

$$
\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \tag{4.2}\\
0.25 & 1 & 0 & 0 & 0 & 0 & 0 \\
0.5 & 0.5 & 1 & 0 & 0 & 0 & 0 \\
0.75 & 0.75 & 0.75 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1.25 & 1.25 & 1.25 & 1.25 & 1.25 & 1 & 0 \\
1.875 & 1.875 & 1.875 & 1.875 & 1.875 & 1.5 & 1
\end{array}\right) .
$$

Comparing (4.1) and (4.2), the absolute values of entry-wise ratios are

$$
\left(\begin{array}{ccccccc}
1 & & & & & & \tag{4.3}\\
1 & 1 & & & & & \\
0.75 & 1 & 1 & & & & \\
0.375 & 0.5 & 1 & 1 & & & \\
0.094 & 0.125 & 0.25 & 1 & 1 & & \\
1 & 0 & 0 & 0 & 1 & 1 & \\
1 & 0 & 0 & 0 & 0.2 & 1 & 1
\end{array}\right) .
$$

Note that here \boldsymbol{L}_{7} was constructed so that $\left|x_{7,1}\right|=W_{7,1}$. In fact, as suggested by (2.19), for each 4-tuple $(\boldsymbol{\kappa}, I, J, n)$ with $1 \leq J \leq I \leq n$, there exists a pair $\left(\boldsymbol{L}_{n}, \boldsymbol{X}_{n}\right)$ satisfying (1.2) with $\boldsymbol{X}_{n}=\left(x_{i, j}\right)=\boldsymbol{L}_{n}^{-1}$, such that $\left|x_{I, J}\right|=W_{I, J}$.

Example 4.2 (Constant A_{i}). Suppose that $A_{i}=C$ for $i \geq 1$, where $C>0$. Then, for $n \geq 1$,

$$
Z_{n}(\boldsymbol{a})=\left\{\begin{array}{ll}
C, & \text { if } C \leq 1 \\
C^{n}, & \text { if } C>1
\end{array} .\right.
$$

In [3], the following theorem was obtained when (2.2) is replaced with

$$
\begin{equation*}
0 \leq \alpha_{i, j} \leq A \tag{4.4}
\end{equation*}
$$

for $0 \leq j \leq i-1$ and $i \geq 1$.

Theorem 4.1. Suppose that $A>0$ and $m=[1 / A]$, where square brackets indicate the greatest integer function. If $\left\{\Lambda_{j}\right\}_{j=1}^{\infty}$ is defined by

$$
\begin{equation*}
\Lambda_{n}=\max \left\{\left|b_{n}\right|:\left\{b_{i}\right\} \text { and }\left[\alpha_{i, j}\right] \text { satisfy (2.1) and (4.4) }\right\} \text {, } \tag{4.5}
\end{equation*}
$$

for $n \geq 1$, then

$$
\Lambda_{n}=\left\{\begin{array}{ll}
A, & \text { if } n=1 \tag{4.6}\\
\max \left(A, A^{2}\right), & \text { if } n=2 \\
{\left[\frac{n-2}{2}\right]\left[\frac{n-1}{2}\right] A^{3}+A,} & \text { if } 3 \leq n \leq 2 m+1 \\
(n-2) A^{2}, & \text { if } n=2 m+2 \\
A \Lambda_{n-1}+\Lambda_{n-2}, & \text { if } n \geq 2 m+3
\end{array} .\right.
$$

Proof. See [3].
Thus, if the monotonicity assumption in (2.2) is dropped the scenario is much different. In fact, in (4.6), $\left\{\Lambda_{n}\right\}$ increases at an exponential rate for all $A>0$. This leads to the following question.

Open Question. Set

$$
\begin{equation*}
\Lambda_{n}^{*}=\max \left\{\left|b_{n}\right|:\left\{b_{i}\right\} \text { and }\left[\alpha_{i, j}\right] \text { satisfy } 2.1 \text { and } \alpha_{i, j} \leq A_{i} \text { for } 0 \leq j \leq i-1\right\} . \tag{4.7}
\end{equation*}
$$

What is the value of Λ_{n}^{*} in terms of the sequence $\left\{A_{i}\right\}$ and its assorted properties (eg. monotonicity, convexity etc.)?

References

[1] M. BENZI, aND G. GOLUB, Bounds for the entries of matrix functions with applications to preconditioning, BIT, 39(3) (1999), 417-438.
[2] K.S. BERENHAUT and D. BANDYOPADHYAY, Monotone convex sequences and Cholesky decomposition of symmetric Toeplitz matrices, Linear Algebra and Its Applications, 403 (2005), 75-85.
[3] K.S. BERENHAUT AND D.C. MORTON, Second order bounds for linear recurrences with negative coefficients, in press, J. of Comput. and App. Math., (2005).
[4] S. DEMKO, W. MOSS, AND P. SMITH, Decay rates for inverses of band matrices, Math. Comp., 43 (1984), 491-499.
[5] V. EIJKHOUT and B. POLMAN, Decay rates of inverses of banded m-matrices that are near to Toeplitz matrices, Linear Algebra Appl., 109 (1988), 247-277.
[6] S. JAFFARD, Propriétés des matrices "bien localisées" près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7(5) (1990), 461-476.
[7] R. NABBEN, Decay rates of the inverse of nonsymmetric tridiagonal and band matrices, SIAM J. Matrix Anal. Appl., 20(3) (1999), 820-837.
[8] R. NABBEN, Two-sided bounds on the inverses of diagonally dominant tridiagonal matrices, Special issue celebrating the 60th birthday of Ludwig Elsner, Linear Algebra Appl., 287(1-3) (1999), 289-305.
[9] R. PELUSO, and T. POLITI, Some improvements for two-sided bounds on the inverse of diagonally dominant tridiagonal matrices, Linear Algebra Appl., 330(1-3) (2001), 1-14.
[10] P.D. ROBINSON AND A.J. WATHEN, Variational bounds on the entries of the inverse of a matrix, IMA J. Numer. Anal., 12(4) (1992), 463-486.
[11] T. STROHMER, Four short stories about Toeplitz matrix calculations, Linear Algebra Appl., 343/344 (2002), 321-344.
[12] A. VECCHIO, A bound for the inverse of a lower triangular Toeplitz matrix, SIAM J. Matrix Anal. Appl., 24(4) (2003), 1167-1174.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 We are very thankful to the referees for comments and insights that substantially improved this manuscript.
 The first author acknowledges financial support from a Sterge Faculty Fellowship and an Archie fund grant.
 166-04

