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ABSTRACT. In this paper using classical inequalities and Cardan-Viète formulae some inequal-
ities involving zeroes and coefficients of hyperbolic polynomials are given. Furthermore, con-
sidering real polynomials whose zeros lie inRe(z) > 0, the previous results have been extended
and new inequalities are obtained.
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1. I NTRODUCTION

The problem of finding relations between the zeroes and coefficients of a polynomial oc-
cupies a central role in the theory of equations. The most well known of such relations are
Cardan-Viète’s formulae [1]. Many papers devoted to obtaining inequalities between the zeros
and coefficient have been written giving new bounds or improving the classical known ones ([2],
[3], [4]). Furthermore, inequalities for polynomials with all zeros real also called hyperbolic
polynomials, have been fully documented in [5]. In this paper, using some classical inequalities,
several inequalities involving zeros and coefficients of polynomials with real zeros have been
obtained and the main result has been extended to polynomials whose zeros lie in the right half
plane.

2. THE I NEQUALITIES

In what follows some zero and coefficient inequalities involving polynomials whose zeros
are strictly positive real numbers are obtained. We begin with
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Theorem 2.1. Let A(x) =
∑n

k=0 akx
k, an 6= 0, be a hyperbolic polynomial with all its zeroes

x1, x2, . . . , xn strictly positive. Ifα, p andb are strictly positive real numbers such thatα < p,
then

(2.1)
n∑

k=1

1

[xp
k + b]

1
α

≤ α
1
p

p
1
α

(
p− α

b

) 1
α
− 1

p
∣∣∣∣a1

a0

∣∣∣∣ .
Equality holds whenA(x) = an

(
x−

(
bα

p−α

) 1
p

)n

.

Proof. Let β anda be strictly positive real numbers defined byβ = 1− α
p

> 0 anda = bα
pβ

> 0.
Taking into account thatα

p
+ β = 1 and applying the powered AM-GM inequality, we have for

all k, 1 ≤ k ≤ n,

(2.2) (xp
k)

α
p aβ ≤ α

p
xp

k + βa.

Inverting the terms in (2.2) yields

1
α
p
xp

k + βa
≤ 1

xα
kaβ

, 1 ≤ k ≤ n,

or equivalently
1

xp
k + p

α
βa

≤ α

p
· 1

xα
kaβ

.

Taking into account thatp
α
βa = b andβ = p−α

p
, we have

1

xp
k + b

≤ α

p
· 1(

bα
pβ

)β

1

xα
k

=
α

p
· pβββ

bβαβ

1

xα
k

=
α

p
·
p1−α

p (p−α
p

)1−α
p

b1−α
p α1−α

p

· 1

xα
k

=
α

α
p

p

(
p− α

b

)1−α
p 1

xα
k

.

Raising to1
α

both sides of the preceding inequality, yields

1

[xp
k + b]

1
α

≤ α
1
p

p
1
α

(
p− α

b

) 1
α
− 1

p 1

xk

, 1 ≤ k ≤ n.

Finally, adding up the preceding inequalities, we obtain
n∑

k=1

1

[xp
k + b]

1
α

≤ α
1
p

p
1
α

(
p− α

b

) 1
α
− 1

p
n∑

k=1

1

xk

=
α

1
p

p
1
α

(
p− α

b

) 1
α
− 1

p
∣∣∣∣a1

a0

∣∣∣∣
and (2.1) is proved.

Notice that equality holds in (2.1) if and only if equality holds in (2.2) for1 ≤ k ≤ n.

Namely, equality holds whenxp
k = a, 1 ≤ k ≤ n or xk = a

1
p =

(
bα
pβ

) 1
p

=
(

bα
p−α

) 1
p
. That is,

whenA(x) = an

(
x−

(
bα

p−α

) 1
p

)n

, an 6= 0. �
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Whenα > p changingα by 1
α

andp by 1
p

into (2.1), we have the following:

Corollary 2.2. If α, p andb are strictly positive real numbers such thatα > p, then
n∑

k=1

1

[x
1
p

k + b]α
≤ pp

αα

(
α− p

b

)α−p ∣∣∣∣a1

a0

∣∣∣∣ .
Multiplying both sides of (2.2) byp

α
and raising to1

α
, we obtain for1 ≤ k ≤ n,(

xp
k +

p

α
βa
) 1

α ≥
( p

α

) 1
α

a
β
α xk.

Settingβ = 1 − α
p
, a = bα

pβ
into the preceding expression and, after adding up the resulting

inequalities, we get

Corollary 2.3. If α, p andb are strictly positive real numbers such thatα < p, then
n∑

k=1

(xp
k + b)

1
α ≥ p

1
α

α
1
p

(
b

p− α

) 1
α
− 1

p
∣∣∣∣an−1

an

∣∣∣∣
holds.

Another, immediate consequence of (2.1) is the following.

Corollary 2.4. LetA(x) =
∑n

k=0 akx
k, an 6= 0, be a hyperbolic polynomial with all its zeroes

x1, x2, . . . , xn strictly positive. Then,
n∑

k=1

1

[xn
k + 2n− 1]2

≤ 1

4n2

∣∣∣∣a1

a0

∣∣∣∣
holds.

Proof. Settingα = 1
2
, p = n andb = 2n− 1 into (2.1), we have

n∑
k=1

1

[xn
k + 2n− 1]2

≤
(

1
2

) 1
n

n2

(
n− 1

2

2n− 1

)2− 1
n
∣∣∣∣a1

a0

∣∣∣∣
=

(
1
2

) 1
n

n2

(
1

2

)2− 1
n
∣∣∣∣a1

a0

∣∣∣∣
=

1

4n2

∣∣∣∣a1

a0

∣∣∣∣ .
Note that equality holds whenxk = 1, 1 ≤ k ≤ n. That is, whenA(x) = an(x − 1)n. This
completes the proof. �

Considering the reverse polynomialA∗(x) = xnA(1/x) =
∑n

k=0 an−kx
k, we have the fol-

lowing

Theorem 2.5. If α, p andb are strictly positive real numbers such thatα < p, then

(2.3)
n∑

k=1

(
xp

k

xp
k + b

) 1
α

≤ α
1
p

p
1
α b

1
p

· (p− α)
1
α
− 1

p

∣∣∣∣an−1

an

∣∣∣∣ .
Equality holds whenA(x) = an

(
x−

(
b(p−α)

α

) 1
p

)n

, an 6= 0.
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Proof. SinceA∗(x) has zeros1
x1

, . . . , 1
xn

, then applying (2.1) to it, we get

n∑
k=1

1[(
1
xk

)p

+ b
] 1

α

≤ α
1
p

p
1
α

·
(

p− α

b

) 1
α
− 1

p
∣∣∣∣an−1

an

∣∣∣∣ .
Developing the LHS of the preceding inequality, we have

1

b
1
α

n∑
k=1

(
xp

k
1
b
+ xp

k

) 1
α

≤ α
1
p

p
1
α

·
(

p− α

b

) 1
α
− 1

p
∣∣∣∣an−1

an

∣∣∣∣ ,
and rearranging terms, yields

n∑
k=1

(
xp

k
1
b
+ xp

k

) 1
α

≤ b
1
α · α

1
p

p
1
α

·
(

p− α

b

) 1
α
− 1

p
∣∣∣∣an−1

an

∣∣∣∣
=

α
1
p

p
1
α

· b
1
p · (p− α)

1
α
− 1

p

∣∣∣∣an−1

an

∣∣∣∣ .
Finally, replacingb by 1/b in the preceding inequality we get (2.3) as claimed.

Applying Theorem 2.1, equality in (2.3) holds whenA∗(x) = an

(
x−

(
α

b(p−α)

) 1
p

)n

. Tak-

ing into account that we have changedb by 1/b, equality will hold if and only if A(x) =

an

(
x−

(
b(p−α)

α

) 1
p

)n

, an 6= 0 and the proof is completed. �

Next, we state and prove the following:

Theorem 2.6. Let A(x) be a hyperbolic polynomial with zerosx1, x2, . . . , xn such thatx1 ≤
x2 ≤ · · · ≤ xn. Let α, p andb be strictly positive real numbers such thatα < p. If a < x1 or
a > xn, then

(2.4)
n∑

k=1

1

[|xk − a|p + b]
1
α

≤ α
1
p

p
1
α

(
p− α

b

) 1
α
− 1

p
∣∣∣∣P ′(a)

P (a)

∣∣∣∣ .
Equality holds when

A(x) = an

(
x−

[
a +

(
bα

p− α

) 1
p

])n

or

A(x) = an

(
x−

[
a−

(
bα

p− α

) 1
p

])n

.

Proof. First, we observe that (2.1) applied to polynomialP (−t) whereP (t) has all its zeros
t1, t2, . . . , tn negative, yields

(2.5)
n∑

k=1

1

[|tk|p + b]
1
α

≤ α
1
p

p
1
α

·
(

p− α

b

) 1
α
− 1

p
∣∣∣∣a1

a0

∣∣∣∣ ,
where equality holds whenP (t) = an

(
t +
(

bα
p−α

) 1
p

)n

, an 6= 0.

Now, we consider the hyperbolic polynomial of the statement and assume that (i)a < x1 or
(ii) a > xn. Let B(x) = A(x + a), the zeros of which arex1 − a, x2 − a, . . . , xn − a. Observe
that, they are positive for case (i), and negative for case (ii). On the other hand, coefficientsa0
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anda1 of B(x) areB(0) = A(a) andB′(0) = A′(a) respectively. Applying (2.1) toB(x) in
case (i) or (2.5) in case (ii) we get (2.4).

Finally, we see that equality in (2.4) holds in the case (i) whenB(x) = an

(
x−

(
bα

p−α

) 1
p

)n

,

or equivalently whenA(x) = an

(
x−

[
a +

(
bα

p−α

) 1
p

])n

. In case (ii) we will get equality when

B(x) = an

(
x +

(
bα

p−α

) 1
p

)n

, an 6= 0. That is, whenA(x) = an

(
x−

[
a−

(
bα

p−α

) 1
p

])n

and

the proof is completed. �

Finally, in the sequel we will extend the result obtained in Theorem 2.1 to real polynomials
whose zeros lie in the half planeRe(z) > 0 and they have an imaginary part “sufficiently small”.
This is stated and proved in the following.

Theorem 2.7. Let A(z) =
∑n

k=0 akz
k be a polynomial with real coefficients whose zeros

z1, z2, . . . , zn lie in Re(z) > 0 and suppose that| Im(z)| ≤ r Re(zk), 1 ≤ k ≤ n for some
real r ≥ 0. Letα, p andb be strictly positive real numbers such thatα < p, then

(2.6)
n∑

k=1

1

[|zk|p + b]
1
α

≤ α
1
p

p
1
α

·
(

p− α

b

) 1
α
− 1

p

·
√

1 + r2

∣∣∣∣a1

a0

∣∣∣∣ .
For r > 0, equality holds whenn is even and

A(z) =

(
z2 − 2√

1 + r2
·
(

bα

p− α

) 1
p

z +

(
bα

p− α

) 2
p

)n
2

.

Note that whenr = 0 the preceding result reduces to (2.1).

Proof. Settingxk = |zk| and repeating the procedure followed in proving (2.1), we get

n∑
k=1

1

[|zk|p + b]
1
α

≤ α
1
p

p
1
α

·
(

p− α

b

) 1
α
− 1

p
n∑

k=1

1

|zk|
.

Next, we will find an upper bound for the sumS =
∑n

k=1
1
|zk|

. Reordering the zeros ofA(z) in
the wayz1, z1, z2, z2, . . . , zs, zs, x1, . . . , xt,wherex1, . . . , xt are the real zeros (if any), then the
preceding sum becomes

S = 2
s∑

k=1

1

|zk|
+

t∑
k=1

1

|xk|
= 2

s∑
k=1

|zk|
|zk|2

+
t∑

k=1

1

|xk|
.

On the other hand, by Cardan-Viète formulae, we have

−a1

a0

=
s∑

k=1

[
1

zk

+
1

zk

]
+

t∑
k=1

1

xk

= 2
s∑

k=1

Re zk

|zk|2
+

t∑
k=1

1

xk

.
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Taking into account that|zk| =
√

(Re zk)2 + (Im zk)2 ≤
√

1 + r2 |Re zk| and the fact that the
zeros ofA(z) lie in Re(z) > 0, yields

S = 2
s∑

k=1

|zk|
|zk|2

+
t∑

k=1

1

|xk|
(2.7)

≤ 2
√

1 + r2

s∑
k=1

|Re zk|
|zk|2

+
t∑

k=1

1

|xk|

≤
√

1 + r2

(
2

s∑
k=1

|Re zk|
|zk|2

+
t∑

k=1

1

|xk|

)

=
√

1 + r2

∣∣∣∣a1

a0

∣∣∣∣ ,
from which (2.6) immediately follows.

Next, we will see when equality holds in (2.6). Ifr > 0, to get equality in (2.6) we require

that (i) all the zeros ofA(z) have modulus|zk| =
(

bα
p−α

) 1
p
, because whenxk = |zk| the powered

GM-AM inequality (2.2) must become equality, (ii)|Im zk| = r Re zk, 1 ≤ k ≤ s, due to the
fact that the inequality in (2.7) must become equality, and (iii) all the zeros ofA(z) must be
complex because the second inequality in (2.7) also must be an equality. Now it is easy to see
that the previous conditions are equivalent to say thatn is even and

zk =
1√

1 + r2

(
bα

p− α

) 1
p

[1 + ri], 1 ≤ k ≤ n

2
.

Multiplying the preceding zeros we get that inequality in (2.6) holds whenn is even and

A(z) =

(
z2 − 2√

1 + r2

(
bα

p− α

) 1
p

z +

(
bα

p− α

) 2
p

)n
2

.

This completes the proof. �
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