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ABSTRACT. We discuss a refinement of an inequality from Information Theory using other
well known inequalities. Then we consider relationships between the logarithmic mean and
inequalities of the geometric-arithmetic means.
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1. RESULTS

The following inequality is well known in Information Theory [1], see also [4].

Proposition 1.1. Let pi , gi > 0, where1 ≤ i ≤ n and
∑n

i=1 pi =
∑n

i=1 gi. Then0 ≤∑n
i=1 pi ln(pi/gi) with equality iffpi = gi, for all i.

The following improves this inequality. Indeed, the lower bound is sharpened, an upper
bound is provided, and the equality condition is built right in.

Proposition 1.2. Let pi , gi > 0, where1 ≤ i ≤ n and
∑n

i=1 pi =
∑n

i=1 gi. Then the following
estimates hold.

n∑
i=1

gi(gi − pi)
2

(gi)2 + (max(gi, pi))2
≤

n∑
i=1

pi ln

(
pi

gi

)
≤

n∑
i=1

gi(gi − pi)
2

(gi)2 + (min(gi, pi))2
.

Proof. We begin with the inequality [6]

(1.1)
1

x2 + 1
≤ ln(x)

x2 − 1
≤ 1

2x
, for x > 0.
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Thus
x2 − 1

2x
≤ ln(x) ≤ x2 − 1

x2 + 1
for 0 < x ≤ 1 ,

and
x2 − 1

x2 + 1
≤ ln(x) ≤ x2 − 1

2x
for 1 < x .

Equalities occur only forx = 1. We rewrite these as

(1.2) x− 1− (x− 1)2

2x
≤ ln(x) ≤ x− 1− x(x− 1)2

x2 + 1
for 0 < x ≤ 1 ,

and

(1.3) x− 1− x(x− 1)2

x2 + 1
≤ ln(x) ≤ x− 1− (x− 1)2

2x
for 1 < x .

Now, substitutinggi/pi for x in (1.2) and (1.3), and then summing we obtain∑
gi≤pi

gi −
∑
gi≤pi

pi −
∑
gi≤pi

gi(gi − pi)
2

(gi)2 + (gi)2
≤

∑
gi≤pi

pi ln

(
gi

pi

)
≤

∑
gi≤pi

gi −
∑
gi≤pi

pi −
∑
gi≤pi

gi(gi − pi)
2

(gi)2 + (pi)2

and ∑
gi>pi

gi −
∑
gi>pi

pi −
∑
gi>pi

gi(gi − pi)
2

(gi)2 + (pi)2
≤

∑
gi>pi

pi ln

(
gi

pi

)
≤

∑
gi>pi

gi −
∑
gi>pi

pi −
∑
gi>pi

gi(gi − pi)
2

(gi)2 + (gi)2

respectively.
Taking these together and using

∑n
i=1 pi =

∑n
i=1 gi we have our proposition. �

2. REMARKS

Remark 2.1. With G =
√

xy, L = (x − y)/(ln(x) − ln(y)), andA = (x + y)/2, being
the Geometric, Logarithmic, and Arithmetic Means ofx, y > 0 respectively, the inequality
G ≤ L ≤ A is well known [8], [2]. This can be proved by observing (c.f. [5]) that

L =

∫ 1

0

xty1−t dt,

and then applying the following:

Theorem 2.2(Hadamard’s Inequality). If f is a convex function on[a, b], then

(b− a)f

(
a + b

2

)
≤

∫ b

a

f(t) dt ≤ f(a) + f(b)

2
(b− a)

with the inequalities being strict whenf is not constant.

The inequality in (1.1) now can be obtained by lettingy = 1/x in G ≤ L ≤ A. Thus any
refinement ofG ≤ L ≤ A would lead to an improved version of (1.1) and, in principle, to
an improvenemt of Proposition 1.2. For example, it is also known thatG ≤ G

2
3 A

1
3 ≤ L ≤

2
3
G + 1

3
A ≤ A [3], [8], [2]. The latter can be proved simply by observing that the left side of

Hadamard’s Inequality is the midpoint approximationM to L and the right side is the trapezoid
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approximationT . Now 2
3
M + 1

3
T is Simpson’s rule and looking at the error term there (e.g.

[7]) yieldsL ≤ 2
3
G + 1

3
A ≤ A.

Remark 2.3. UsingG ≤ G
2
3 A

1
3 ≤ L ≤ 2

3
G + 1

3
A ≤ A, with y = x + 1 we get√

x(x + 1) ≤ (
√

x(x + 1))
2
3

(
2x + 1

2

) 1
3

≤ 1

ln(1 + 1
x
)
≤ 2

3

√
x(x + 1) +

1

3

2x + 1

2
≤ 2x + 1

2
.

Therefore (
1 +

1

x

) 2
3

√
x(x+1)+ 1

3
2x+1

2

< e <

(
1 +

1

x

)(
√

x(x+1))2/3( 2x+1
2 )

1/3

(c.f. [4]). For examplex = 100 gives2.71828182842204 < e < 2.71828182846830. Now
e = 2.71828182845905 . . . , so the left and right hand sides are both correct to 10 decimal
places. We point out also thatx does not need to be an integer.

Remark 2.4. UsingG ≤ G
2
3 A

1
3 ≤ L ≤ 2

3
G + 1

3
A ≤ A, and replacingx with ex and letting

y = e−x, we have

1 ≤ (cosh(x))1/3 ≤ sinh(x)

x
≤ 2

3
+

1

3
cosh(x) ≤ cosh(x).
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