Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 1, Article 3, 2004

A REFINEMENT OF AN INEQUALITY FROM INFORMATION THEORY

GARRY T. HALLIWELL AND PETER R. MERCER
Department of Mathematics, SUNY College at Buffalo, NY 14222, USA.
hallgt31@mail.buffalostate.edu
mercerpr@math.buffalostate.edu

Received 15 November, 2003; accepted 11 December, 2003
Communicated by P. Bullen

Abstract

We discuss a refinement of an inequality from Information Theory using other well known inequalities. Then we consider relationships between the logarithmic mean and inequalities of the geometric-arithmetic means.

Key words and phrases: Logarithmic Mean, Information Theory.
2000 Mathematics Subject Classification. 26D15.

1. Results

The following inequality is well known in Information Theory [1], see also [4].
Proposition 1.1. Let $p_{i}, g_{i}>0$, where $1 \leq i \leq n$ and $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} g_{i}$. Then $0 \leq$ $\sum_{i=1}^{n} p_{i} \ln \left(p_{i} / g_{i}\right)$ with equality iff $p_{i}=g_{i}$, for all i.

The following improves this inequality. Indeed, the lower bound is sharpened, an upper bound is provided, and the equality condition is built right in.
Proposition 1.2. Let $p_{i}, g_{i}>0$, where $1 \leq i \leq n$ and $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} g_{i}$. Then the following estimates hold.

$$
\sum_{i=1}^{n} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(\max \left(g_{i}, p_{i}\right)\right)^{2}} \leq \sum_{i=1}^{n} p_{i} \ln \left(\frac{p_{i}}{g_{i}}\right) \leq \sum_{i=1}^{n} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(\min \left(g_{i}, p_{i}\right)\right)^{2}}
$$

Proof. We begin with the inequality [6]

$$
\begin{equation*}
\frac{1}{x^{2}+1} \leq \frac{\ln (x)}{x^{2}-1} \leq \frac{1}{2 x}, \text { for } x>0 \tag{1.1}
\end{equation*}
$$

[^0]Thus

$$
\frac{x^{2}-1}{2 x} \leq \ln (x) \leq \frac{x^{2}-1}{x^{2}+1} \quad \text { for } 0<x \leq 1
$$

and

$$
\frac{x^{2}-1}{x^{2}+1} \leq \ln (x) \leq \frac{x^{2}-1}{2 x} \quad \text { for } 1<x
$$

Equalities occur only for $x=1$. We rewrite these as

$$
\begin{equation*}
x-1-\frac{(x-1)^{2}}{2 x} \leq \ln (x) \leq x-1-\frac{x(x-1)^{2}}{x^{2}+1} \quad \text { for } 0<x \leq 1 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x-1-\frac{x(x-1)^{2}}{x^{2}+1} \leq \ln (x) \leq x-1-\frac{(x-1)^{2}}{2 x} \quad \text { for } 1<x \tag{1.3}
\end{equation*}
$$

Now, substituting g_{i} / p_{i} for x in (1.2) and (1.3), and then summing we obtain

$$
\begin{aligned}
\sum_{g_{i} \leq p_{i}} g_{i}-\sum_{g_{i} \leq p_{i}} p_{i}-\sum_{g_{i} \leq p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(g_{i}\right)^{2}} & \leq \sum_{g_{i} \leq p_{i}} p_{i} \ln \left(\frac{g_{i}}{p_{i}}\right) \\
& \leq \sum_{g_{i} \leq p_{i}} g_{i}-\sum_{g_{i} \leq p_{i}} p_{i}-\sum_{g_{i} \leq p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(p_{i}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{g_{i}>p_{i}} g_{i}-\sum_{g_{i}>p_{i}} p_{i}-\sum_{g_{i}>p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(p_{i}\right)^{2}} & \leq \sum_{g_{i}>p_{i}} p_{i} \ln \left(\frac{g_{i}}{p_{i}}\right) \\
& \leq \sum_{g_{i}>p_{i}} g_{i}-\sum_{g_{i}>p_{i}} p_{i}-\sum_{g_{i}>p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(g_{i}\right)^{2}}
\end{aligned}
$$

respectively.
Taking these together and using $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} g_{i}$ we have our proposition.

2. Remarks

Remark 2.1. With $G=\sqrt{x y}, L=(x-y) /(\ln (x)-\ln (y))$, and $A=(x+y) / 2$, being the Geometric, Logarithmic, and Arithmetic Means of $x, y>0$ respectively, the inequality $G \leq L \leq A$ is well known [8], [2]. This can be proved by observing (c.f. [5]) that

$$
L=\int_{0}^{1} x^{t} y^{1-t} d t
$$

and then applying the following:
Theorem 2.2 (Hadamard's Inequality). If f is a convex function on $[a, b]$, then

$$
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}(b-a)
$$

with the inequalities being strict when f is not constant.
The inequality in (1.1) now can be obtained by letting $y=1 / x$ in $G \leq L \leq A$. Thus any refinement of $G \leq L \leq A$ would lead to an improved version of (1.1) and, in principle, to an improvenemt of Proposition 1.2. For example, it is also known that $G \leq G^{\frac{2}{3}} A^{\frac{1}{3}} \leq L \leq$ $\frac{2}{3} G+\frac{1}{3} A \leq A$ [3], [8], [2]. The latter can be proved simply by observing that the left side of Hadamard's Inequality is the midpoint approximation M to L and the right side is the trapezoid
approximation T. Now $\frac{2}{3} M+\frac{1}{3} T$ is Simpson's rule and looking at the error term there (e.g. [7]) yields $L \leq \frac{2}{3} G+\frac{1}{3} A \leq A$.

Remark 2.3. Using $G \leq G^{\frac{2}{3}} A^{\frac{1}{3}} \leq L \leq \frac{2}{3} G+\frac{1}{3} A \leq A$, with $y=x+1$ we get

$$
\begin{aligned}
\sqrt{x(x+1)} & \leq(\sqrt{x(x+1)})^{\frac{2}{3}}\left(\frac{2 x+1}{2}\right)^{\frac{1}{3}} \\
& \leq \frac{1}{\ln \left(1+\frac{1}{x}\right)} \leq \frac{2}{3} \sqrt{x(x+1)}+\frac{1}{3} \frac{2 x+1}{2} \leq \frac{2 x+1}{2} .
\end{aligned}
$$

Therefore

$$
\left(1+\frac{1}{x}\right)^{\frac{2}{3} \sqrt{x(x+1)}+\frac{1}{3} \frac{2 x+1}{2}}<e<\left(1+\frac{1}{x}\right)^{(\sqrt{x(x+1)})^{2 / 3}\left(\frac{2 x+1}{2}\right)^{1 / 3}}
$$

(c.f. [4]). For example $x=100$ gives $2.71828182842204<e<2.71828182846830$. Now $e=2.71828182845905 \ldots$, so the left and right hand sides are both correct to 10 decimal places. We point out also that x does not need to be an integer.
Remark 2.4. Using $G \leq G^{\frac{2}{3}} A^{\frac{1}{3}} \leq L \leq \frac{2}{3} G+\frac{1}{3} A \leq A$, and replacing x with e^{x} and letting $y=e^{-x}$, we have

$$
1 \leq(\cosh (x))^{1 / 3} \leq \frac{\sinh (x)}{x} \leq \frac{2}{3}+\frac{1}{3} \cosh (x) \leq \cosh (x) .
$$

Acknowledgement

The authors are grateful to Daniel W. Cunningham for helpful suggestions and encouragement. The authors are also grateful to the referee and editor for excellent suggestions.

References

[1] L. BRILLOUIN, Science and Information Theory, 2nd Ed. Academic Press, 1962.
[2] B.C. CARLSON, The logarithmic mean, Amer. Math. Monthly, 79 (1972), 72-75.
[3] E.B. LEACH and M.C. SHOLANDER, Extended mean values II, J. Math. Anal. Applics., 92 (1983), 207-223.
[4] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[5] E. NEUMAN, The weighted logarithmic mean, J. Math. Anal. Applics., 188 (1994), 885-900.
[6] P.S. BULLEN, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, 2003.
[7] P.S. BULLEN, Error estimates for some elementary quadrature rules, Elek. Fak. Univ. Beograd., 577-599 (1979), 3-10.
[8] G. PÒLYA AND G. SZEGÖ, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Pr., 2001.

[^0]: ISSN (electronic): 1443-5756
 (C) 2004 Victoria University. All rights reserved.

 The first author was supported by a Buffalo State College Research Foundation Undergraduate Summer Research Fellowship. The second author was supported in part by the Buffalo State College Research Foundation.

 169-03

