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Abstract

We discuss a refinement of an inequality from Information Theory using other
well known inequalities. Then we consider relationships between the logarith-
mic mean and inequalities of the geometric-arithmetic means.
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1. Results
The following inequality is well known in Information Theory [1], see also [4].

Proposition 1.1. Let pi , gi > 0, where1 ≤ i ≤ n and
∑n

i=1 pi =
∑n

i=1 gi.
Then0 ≤

∑n
i=1 pi ln(pi/gi) with equality iffpi = gi, for all i.

The following improves this inequality. Indeed, the lower bound is sharp-
ened, an upper bound is provided, and the equality condition is built right in.

Proposition 1.2. Let pi , gi > 0, where1 ≤ i ≤ n and
∑n

i=1 pi =
∑n

i=1 gi.
Then the following estimates hold.

n∑
i=1

gi(gi − pi)
2

(gi)2 + (max(gi, pi))2
≤

n∑
i=1

pi ln

(
pi

gi

)
≤

n∑
i=1

gi(gi − pi)
2

(gi)2 + (min(gi, pi))2
.

Proof. We begin with the inequality [6]

(1.1)
1

x2 + 1
≤ ln(x)

x2 − 1
≤ 1

2x
, for x > 0.

Thus
x2 − 1

2x
≤ ln(x) ≤ x2 − 1

x2 + 1
for 0 < x ≤ 1 ,

and
x2 − 1

x2 + 1
≤ ln(x) ≤ x2 − 1

2x
for 1 < x .

Equalities occur only forx = 1. We rewrite these as

(1.2) x− 1− (x− 1)2

2x
≤ ln(x) ≤ x− 1− x(x− 1)2

x2 + 1
for 0 < x ≤ 1 ,
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and

(1.3) x− 1− x(x− 1)2

x2 + 1
≤ ln(x) ≤ x− 1− (x− 1)2

2x
for 1 < x .

Now, substitutinggi/pi for x in (1.2) and (1.3), and then summing we obtain∑
gi≤pi

gi −
∑
gi≤pi

pi −
∑
gi≤pi

gi(gi − pi)
2

(gi)2 + (gi)2
≤

∑
gi≤pi

pi ln

(
gi

pi

)
≤

∑
gi≤pi

gi −
∑
gi≤pi

pi −
∑
gi≤pi

gi(gi − pi)
2

(gi)2 + (pi)2

and∑
gi>pi

gi −
∑
gi>pi

pi −
∑
gi>pi

gi(gi − pi)
2

(gi)2 + (pi)2
≤

∑
gi>pi

pi ln

(
gi

pi

)
≤

∑
gi>pi

gi −
∑
gi>pi

pi −
∑
gi>pi

gi(gi − pi)
2

(gi)2 + (gi)2

respectively.
Taking these together and using

∑n
i=1 pi =

∑n
i=1 gi we have our proposition.
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2. Remarks
Remark 2.1. With G =

√
xy, L = (x − y)/(ln(x) − ln(y)), andA = (x +

y)/2, being the Geometric, Logarithmic, and Arithmetic Means ofx, y > 0
respectively, the inequalityG ≤ L ≤ A is well known [8], [ 2]. This can be
proved by observing (c.f. [5]) that

L =

∫ 1

0

xty1−t dt,

and then applying the following:

Theorem 2.1 (Hadamard’s Inequality). If f is a convex function on[a, b], then

(b− a)f

(
a + b

2

)
≤

∫ b

a

f(t) dt ≤ f(a) + f(b)

2
(b− a)

with the inequalities being strict whenf is not constant.

The inequality in (1.1) now can be obtained by lettingy = 1/x in G ≤ L ≤
A. Thus any refinement ofG ≤ L ≤ A would lead to an improved version of
(1.1) and, in principle, to an improvenemt of Proposition1.2. For example, it is
also known thatG ≤ G

2
3 A

1
3 ≤ L ≤ 2

3
G + 1

3
A ≤ A [3], [ 8], [ 2]. The latter can

be proved simply by observing that the left side of Hadamard’s Inequality is the
midpoint approximationM to L and the right side is the trapezoid approxima-
tion T . Now 2

3
M + 1

3
T is Simpson’s rule and looking at the error term there

(e.g. [7]) yieldsL ≤ 2
3
G + 1

3
A ≤ A.
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Remark 2.2. UsingG ≤ G
2
3 A

1
3 ≤ L ≤ 2

3
G + 1

3
A ≤ A, with y = x + 1 we get

√
x(x + 1) ≤ (

√
x(x + 1))

2
3

(
2x + 1

2

) 1
3

≤ 1

ln(1 + 1
x
)
≤ 2

3

√
x(x + 1) +

1

3

2x + 1

2
≤ 2x + 1

2
.

Therefore

(
1 +

1

x

) 2
3

√
x(x+1)+ 1

3
2x+1

2

< e <

(
1 +

1

x

)(
√

x(x+1))2/3( 2x+1
2 )

1/3

(c.f. [4]). For examplex = 100 gives2.71828182842204 < e < 2.71828182846830.
Nowe = 2.71828182845905 . . . , so the left and right hand sides are both cor-
rect to 10 decimal places. We point out also thatx does not need to be an
integer.

Remark 2.3. UsingG ≤ G
2
3 A

1
3 ≤ L ≤ 2

3
G + 1

3
A ≤ A, and replacingx with

ex and lettingy = e−x, we have

1 ≤ (cosh(x))1/3 ≤ sinh(x)

x
≤ 2

3
+

1

3
cosh(x) ≤ cosh(x).
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