Journal of Inequalities in Pure and Applied Mathematics

A REFINEMENT OF AN INEQUALITY FROM INFORMATION THEORY

GARRY T. HALLIWELL AND PETER R. MERCER

Department of Mathematics,
SUNY College at Buffalo,
NY 14222, USA.
EMail: hallgt31@mail.buffalostate.edu
EMail:mercerpr@math.buffalostate.edu
volume 5, issue 1, article 3, 2004.

Received 15 November, 2003; accepted 11 December, 2003

Communicated by: P. Bullen

Abstract
Contents
Home Page
Go Back
Quit

Abstract

We discuss a refinement of an inequality from Information Theory using other well known inequalities. Then we consider relationships between the logarithmic mean and inequalities of the geometric-arithmetic means.

2000 Mathematics Subject Classification: 26D15.
Key words: Logarithmic Mean, Information Theory.
The first author was supported by a Buffalo State College Research Foundation Undergraduate Summer Research Fellowship. The second author was supported in part by the Buffalo State College Research Foundation.

Contents

1 Results 3
2 Remarks 5
References

1. Results

The following inequality is well known in Information Theory [1], see also [4].
Proposition 1.1. Let $p_{i}, g_{i}>0$, where $1 \leq i \leq n$ and $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} g_{i}$. Then $0 \leq \sum_{i=1}^{n} p_{i} \ln \left(p_{i} / g_{i}\right)$ with equality iff $p_{i}=g_{i}$, for all i.

The following improves this inequality. Indeed, the lower bound is sharpened, an upper bound is provided, and the equality condition is built right in.

Proposition 1.2. Let $p_{i}, g_{i}>0$, where $1 \leq i \leq n$ and $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} g_{i}$. Then the following estimates hold.

$$
\sum_{i=1}^{n} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(\max \left(g_{i}, p_{i}\right)\right)^{2}} \leq \sum_{i=1}^{n} p_{i} \ln \left(\frac{p_{i}}{g_{i}}\right) \leq \sum_{i=1}^{n} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(\min \left(g_{i}, p_{i}\right)\right)^{2}}
$$

Proof. We begin with the inequality [6]

$$
\begin{equation*}
\frac{1}{x^{2}+1} \leq \frac{\ln (x)}{x^{2}-1} \leq \frac{1}{2 x}, \text { for } x>0 \tag{1.1}
\end{equation*}
$$

Thus

$$
\frac{x^{2}-1}{2 x} \leq \ln (x) \leq \frac{x^{2}-1}{x^{2}+1} \quad \text { for } 0<x \leq 1
$$

and

$$
\frac{x^{2}-1}{x^{2}+1} \leq \ln (x) \leq \frac{x^{2}-1}{2 x} \quad \text { for } 1<x
$$

Equalities occur only for $x=1$. We rewrite these as
A Refinement of an Inequality from Information Theory

Garry T. Halliwell and Peter R. Mercer

Title Page
Contents

Go Back
Close
Quit
Page 3 of 8

$$
\begin{equation*}
x-1-\frac{(x-1)^{2}}{2 x} \leq \ln (x) \leq x-1-\frac{x(x-1)^{2}}{x^{2}+1} \quad \text { for } 0<x \leq 1 \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
x-1-\frac{x(x-1)^{2}}{x^{2}+1} \leq \ln (x) \leq x-1-\frac{(x-1)^{2}}{2 x} \quad \text { for } 1<x \tag{1.3}
\end{equation*}
$$

Now, substituting g_{i} / p_{i} for x in (1.2) and (1.3), and then summing we obtain

$$
\begin{aligned}
\sum_{g_{i} \leq p_{i}} g_{i}-\sum_{g_{i} \leq p_{i}} p_{i}-\sum_{g_{i} \leq p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(g_{i}\right)^{2}} & \leq \sum_{g_{i} \leq p_{i}} p_{i} \ln \left(\frac{g_{i}}{p_{i}}\right) \\
& \leq \sum_{g_{i} \leq p_{i}} g_{i}-\sum_{g_{i} \leq p_{i}} p_{i}-\sum_{g_{i} \leq p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(p_{i}\right)^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{g_{i}>p_{i}} g_{i}-\sum_{g_{i}>p_{i}} p_{i}-\sum_{g_{i}>p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(p_{i}\right)^{2}} & \leq \sum_{g_{i}>p_{i}} p_{i} \ln \left(\frac{g_{i}}{p_{i}}\right) \\
& \leq \sum_{g_{i}>p_{i}} g_{i}-\sum_{g_{i}>p_{i}} p_{i}-\sum_{g_{i}>p_{i}} \frac{g_{i}\left(g_{i}-p_{i}\right)^{2}}{\left(g_{i}\right)^{2}+\left(g_{i}\right)^{2}}
\end{aligned}
$$

respectively.
Taking these together and using $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} g_{i}$ we have our proposition.

2. Remarks

Remark 2.1. With $G=\sqrt{x y}, L=(x-y) /(\ln (x)-\ln (y))$, and $A=(x+$ $y) / 2$, being the Geometric, Logarithmic, and Arithmetic Means of $x, y>0$ respectively, the inequality $G \leq L \leq A$ is well known [8], [2]. This can be proved by observing (c.f. [5]) that

$$
L=\int_{0}^{1} x^{t} y^{1-t} d t
$$

and then applying the following:
Theorem 2.1 (Hadamard's Inequality). If f is a convex function on $[a, b]$, then

$$
(b-a) f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}(b-a)
$$

with the inequalities being strict when f is not constant.
The inequality in (1.1) now can be obtained by letting $y=1 / x$ in $G \leq L \leq$ A. Thus any refinement of $G \leq L \leq A$ would lead to an improved version of (1.1) and, in principle, to an improvenemt of Proposition 1.2. For example, it is also known that $G \leq G^{\frac{2}{3}} A^{\frac{1}{3}} \leq L \leq \frac{2}{3} G+\frac{1}{3} A \leq A$ [3], [8], [2]. The latter can be proved simply by observing that the left side of Hadamard's Inequality is the midpoint approximation M to L and the right side is the trapezoid approximation T. Now $\frac{2}{3} M+\frac{1}{3} T$ is Simpson's rule and looking at the error term there (e.g. [7]) yields $L \leq \frac{2}{3} G+\frac{1}{3} A \leq A$.

A Refinement of an Inequality from Information Theory

Garry T. Halliwell and Peter R. Mercer

Title Page
Contents

Go Back
Close
Quit
Page 5 of 8

Remark 2.2. Using $G \leq G^{\frac{2}{3}} A^{\frac{1}{3}} \leq L \leq \frac{2}{3} G+\frac{1}{3} A \leq A$, with $y=x+1$ we get

$$
\begin{aligned}
\sqrt{x(x+1)} & \leq(\sqrt{x(x+1)})^{\frac{2}{3}}\left(\frac{2 x+1}{2}\right)^{\frac{1}{3}} \\
& \leq \frac{1}{\ln \left(1+\frac{1}{x}\right)} \leq \frac{2}{3} \sqrt{x(x+1)}+\frac{1}{3} \frac{2 x+1}{2} \leq \frac{2 x+1}{2}
\end{aligned}
$$

Therefore

$$
\left(1+\frac{1}{x}\right)^{\frac{2}{3} \sqrt{x(x+1)}+\frac{1}{3} \frac{2 x+1}{2}}<e<\left(1+\frac{1}{x}\right)^{(\sqrt{x(x+1)})^{2 / 3}\left(\frac{2 x+1}{2}\right)^{1 / 3}}
$$

(c.f. [4]). For example $x=100$ gives $2.71828182842204<e<2.71828182846830$. Now $e=2.71828182845905 \ldots$, so the left and right hand sides are both correct to 10 decimal places. We point out also that x does not need to be an integer.

Remark 2.3. Using $G \leq G^{\frac{2}{3}} A^{\frac{1}{3}} \leq L \leq \frac{2}{3} G+\frac{1}{3} A \leq A$, and replacing x with e^{x} and letting $y=e^{-x}$, we have

$$
1 \leq(\cosh (x))^{1 / 3} \leq \frac{\sinh (x)}{x} \leq \frac{2}{3}+\frac{1}{3} \cosh (x) \leq \cosh (x)
$$

A Refinement of an Inequality from Information Theory

Garry T. Halliwell and Peter R. Mercer

Title Page
Contents

Go Back
Close
Quit
Page 6 of 8

Acknowledgement

The authors are grateful to Daniel W. Cunningham for helpful suggestions and encouragement. The authors are also grateful to the referee and editor for excellent suggestions.

J. Ineq. Pure and Appl. Math. 5(1) Art. 3, 2004 http://jipam.vu.edu.au

References

[1] L. BRILLOUIN, Science and Information Theory, 2nd Ed. Academic Press, 1962.
[2] B.C. CARLSON, The logarithmic mean, Amer. Math. Monthly, 79 (1972), 72-75.
[3] E.B. LEACH AND M.C. SHOLANDER, Extended mean values II, J. Math. Anal. Applics., 92 (1983), 207-223.
[4] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[5] E. NEUMAN, The weighted logarithmic mean, J. Math. Anal. Applics., 188 (1994), 885-900.
[6] P.S. BULLEN, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, 2003.
[7] P.S. BULLEN, Error estimates for some elementary quadrature rules, Elek. Fak. Univ. Beograd., 577-599 (1979), 3-10.
[8] G. PÒLYA AND G. SZEGÖ, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Pr., 2001.

A Refinement of an Inequality from Information Theory

Garry T. Halliwell and Peter R. Mercer

Title Page
Contents

Go Back
Close
Quit
Page 8 of 8

