ON AN UPPER BOUND FOR JENSEN'S INEQUALITY

SLAVKO SIMIC
Mathematical Institute SANU, Kneza Mihaila 36
11000 Belgrade, Serbia
EMail: ssimic@turing.mi.sanu.ac.rs

Received:

Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

25 May, 2007
16 November, 2007
S.S. Dragomir

26B25.
Jensen's discrete inequality, global bounds, generalized A-G inequality.
In this paper we shall give another global upper bound for Jensen's discrete inequality which is better than existing ones. For instance, we determine a new converse for the generalized $A-G$ inequality.

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

$$
2
$$

\qquad

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction 3
2 Results 5

3 Proofs 8

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 2 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

Throughout this paper, $\tilde{x}=\left\{x_{i}\right\}$ is a finite sequence of real numbers belonging to a fixed closed interval $I=[a, b], a<b$, and $\tilde{p}=\left\{p_{i}\right\}, \sum p_{i}=1$ is a sequence of positive weights associated with \tilde{x}. If f is a convex function on I, then the wellknown Jensen's inequality $[1,4]$ asserts that:

$$
\begin{equation*}
0 \leq \sum p_{i} f\left(x_{i}\right)-f\left(\sum p_{i} x_{i}\right) \tag{1.1}
\end{equation*}
$$

One can see that the lower bound zero is of global nature since it does not depend on \tilde{p} and \tilde{x} but only on f and the interval I, whereupon f is convex.

An upper global bound (i.e. depending on f and I only) for Jensen's inequality is given by Dragomir [3].

Theorem 1.1. If f is a differentiable convex mapping on I, then we have

$$
\begin{equation*}
\sum p_{i} f\left(x_{i}\right)-f\left(\sum p_{i} x_{i}\right) \leq \frac{1}{4}(b-a)\left(f^{\prime}(b)-f^{\prime}(a)\right):=D_{f}(a, b) \tag{1.2}
\end{equation*}
$$

In [5] we obtain an upper global bound without a differentiability restriction on f. Namely, we proved the following:

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 3 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

For instance, for $f(x)=-x^{s}, 0<s<1 ; f(x)=x^{s}, s>1 ; I \subset \mathbb{R}^{+}$, we have that

$$
\begin{equation*}
S_{f}(a, b) \leq D_{f}(a, b), \tag{1.4}
\end{equation*}
$$

for each $s \in(0,1) \bigcup(1,2] \bigcup[3,+\infty)$.
In this article we establish another global bound $T_{f}(a, b)$ for Jensen's inequality, which is better than both of the aforementioned bounds $D_{f}(a, b)$ and $S_{f}(a, b)$.

Finally, we determine $T_{f}(a, b)$ in the case of the generalized $A-G$ inequality.

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 4 of 11
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Results

Our main result is contained in the following
Theorem 2.1. Let f, \tilde{p}, \tilde{x} be defined as above and $p, q>0, p+q=1$. Then

$$
\begin{align*}
\sum p_{i} f\left(x_{i}\right)-f\left(\sum p_{i} x_{i}\right) & \leq \max _{p}[p f(a)+q f(b)-f(p a+q b)] \tag{2.1}\\
& :=T_{f}(a, b)
\end{align*}
$$

Remark 1. It is easy to see that $g(p):=p f(a)+(1-p) f(b)-f(p a+(1-p) b)$ is concave for $0 \leq p \leq 1$ with $g(0)=g(1)=0$. Hence, there exists a unique positive $\max _{p} g(p)=T_{f}(a, b)$.

The next theorem demonstrates that the inequality (2.1) is stronger than (1.2) or (1.3).

Theorem 2.2. Let \tilde{I} be the domain of a convex function f and $I:=[a, b] \subset \tilde{I}$. Then
I. $T_{f}(a, b) \leq D_{f}(a, b)$;
II. $T_{f}(a, b) \leq S_{f}(a, b)$,
for each $I \subset \tilde{I}$.
The following well known $A-G$ inequality [4] asserts that

$$
\begin{equation*}
A(\tilde{p}, \tilde{x}) \geq G(\tilde{p}, \tilde{x}) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\tilde{p}, \tilde{x}):=\sum p_{i} x_{i} ; \quad G(\tilde{p}, \tilde{x}):=\prod x_{i}^{p_{i}} \tag{2.3}
\end{equation*}
$$

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 5 of 11
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
are generalized arithmetic, i.e., geometric means, respectively.
Applying Theorems 2.1 (cf [2]) and 2.2 with $f(x)=-\log x$, one obtains the following converses of the $A-G$ inequality:

$$
\begin{equation*}
1 \leq \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \leq \exp \left(\frac{(b-a)^{2}}{4 a b}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \leq \frac{(a+b)^{2}}{4 a b} \tag{2.5}
\end{equation*}
$$

Since $1+x \leq e^{x}, x \in \mathbb{R}$, putting $x=\frac{(b-a)^{2}}{4 a b}$, one can see that the inequality (2.5) is stronger than (2.4) for each $a, b \in \mathbb{R}^{+}$.

An even stronger converse of the $A-G$ inequality can be obtained by applying Theorem 2.1.
Theorem 2.3. Let $\tilde{p}, \tilde{x}, A(\tilde{p}, \tilde{x}), G(\tilde{p}, \tilde{x})$ be defined as above and $x_{i} \in[a, b], 0<$ $a<b$.

Denote $u:=\log (b / a) ; w:=\left(e^{u}-1\right) / u$. Then

$$
\begin{equation*}
1 \leq \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \leq \frac{w}{e} \exp \frac{1}{w}:=T(w) \tag{2.6}
\end{equation*}
$$

Comparing the bounds D, S and T, i.e., (2.4), (2.5) and (2.6) for arbitrary \tilde{p} and $x_{i} \in[a, 2 a], a>0$, we obtain

$$
\begin{align*}
1 & \leq \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \leq e^{1 / 8} \approx 1.1331 \tag{2.7}\\
1 & \leq \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \leq 9 / 8=1.125 \tag{2.8}
\end{align*}
$$

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 6 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\begin{equation*}
1 \leq \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \leq 2(e \log 2)^{-1} \approx 1.0615 \tag{2.9}
\end{equation*}
$$

respectively.
Remark 2. One can see that $T(w)=S(t)$, where Specht's ratio $S(t)$ is defined as

$$
\begin{equation*}
S(t):=\frac{t^{1 /(t-1)}}{e \log t^{1 /(t-1)}} \tag{2.10}
\end{equation*}
$$

with $t=b / a$.
It is known $[6,7]$ that $S(t)$ represents the best possible upper bound for the $A-G$ inequality with uniform weights, i.e.

$$
\begin{equation*}
S(t)\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{n}} \geq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\left(\geq\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{n}}\right) . \tag{2.11}
\end{equation*}
$$

Therefore Theorem 2.3 shows that Specht's ratio is the best upper bound for the generalized $A-G$ inequality also.

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 7 of 11
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Proofs

Proof of Theorem 2.1. Since $x_{i} \in[a, b]$, there is a sequence $\left\{\lambda_{i}\right\}, \lambda_{i} \in[0,1]$, such that $x_{i}=\lambda_{i} a+\left(1-\lambda_{i}\right) b$.

Hence

$$
\begin{aligned}
& \sum p_{i} f\left(x_{i}\right)-f\left(\sum p_{i} x_{i}\right) \\
& =\sum p_{i} f\left(\lambda_{i} a+\left(1-\lambda_{i}\right) b\right)-f\left(\sum p_{i}\left(\lambda_{i} a+\left(1-\lambda_{i}\right) b\right)\right) \\
& \leq \sum p_{i}\left(\lambda_{i} f(a)+\left(1-\lambda_{i}\right) f(b)\right)-f\left(a \sum p_{i} \lambda_{i}+b \sum p_{i}\left(1-\lambda_{i}\right)\right. \\
& =f(a)\left(\sum p_{i} \lambda_{i}\right)+f(b)\left(1-\sum p_{i} \lambda_{i}\right)-f\left[a\left(\sum p_{i} \lambda_{i}\right)+b\left(1-\sum p_{i} \lambda_{i}\right)\right] .
\end{aligned}
$$

Denoting $\sum p_{i} \lambda_{i}:=p ; 1-\sum p_{i} \lambda_{i}:=q$, we have that $0 \leq p, q \leq 1, p+q=1$. Consequently,

$$
\begin{aligned}
\sum p_{i} f\left(x_{i}\right)-f\left(\sum p_{i} x_{i}\right) & \leq p f(a)+q f(b)-f(p a+q b) \\
& \leq \max _{p}[p f(a)+q f(b)-f(p a+q b)] \\
& :=T_{f}(a, b)
\end{aligned}
$$

and the proof of Theorem 2.1 is complete.
Proof of Theorem 2.2.

Part I.

Since f is convex (and differentiable, in this case), we have

$$
\begin{equation*}
\forall x, t \in I: f(x) \geq f(t)+(x-t) f^{\prime}(t) \tag{3.1}
\end{equation*}
$$

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 8 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In particular,
(3.2) $f(p a+q b) \geq f(a)+q(b-a) f^{\prime}(a) ; \quad f(p a+q b) \geq f(b)+p(a-b) f^{\prime}(b)$.

Therefore

$$
\begin{aligned}
p f(a)+q f(b)-f(p a+q b) & =p(f(a)-f(p a+q b))+q(f(b)-f(p a+q b)) \\
& \leq p\left(q(a-b) f^{\prime}(a)\right)+q\left(p(b-a) f^{\prime}(b)\right) \\
& =p q(b-a)\left(f^{\prime}(b)-f^{\prime}(a)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
T_{f}(a, b) & :=\max _{p}[p f(a)+q f(b)-f(p a+q b)] \\
& \leq \max _{p}\left[p q(b-a)\left(f^{\prime}(b)-f^{\prime}(a)\right)\right] \\
& =\frac{1}{4}(b-a)\left(f^{\prime}(b)-f^{\prime}(a)\right) \\
& :=D_{f}(a, b) .
\end{aligned}
$$

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 9 of 11
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& \leq f(a)+f(b)-2 f\left(\frac{1}{2}(q a+p b)+\frac{1}{2}(p a+q b)\right) \\
& =f(a)+f(b)-2 f\left(\frac{a+b}{2}\right)
\end{aligned}
$$

Since the right-hand side of the above inequality does not depend on p, we immediately get

$$
\begin{equation*}
T_{f}(a, b) \leq S_{f}(a, b) \tag{3.4}
\end{equation*}
$$

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009
Proof of Theorem 2.3. By Theorem 2.1, applied with $f(x)=-\log x$, we obtain

$$
\begin{aligned}
0 & \leq \log \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \\
& \leq T_{-\log x}(a, b) \\
& =\max _{p}[\log (p a+q b)-p \log a-q \log b] .
\end{aligned}
$$

Using standard arguments it is easy to find that the unique maximum is attained at the point p :

$$
\begin{equation*}
p=\frac{b}{b-a}-\frac{1}{\log b-\log a} \tag{3.5}
\end{equation*}
$$

Since $0<a<b$, we get $0<p<1$ and after some calculations, it follows that

$$
\begin{equation*}
0 \leq \log \frac{A(\tilde{p}, \tilde{x})}{G(\tilde{p}, \tilde{x})} \leq \log \left(\frac{b-a}{\log b-\log a}\right)+\frac{a \log b-b \log a}{b-a}-1 . \tag{3.6}
\end{equation*}
$$

Putting $\log (b / a):=u,\left(e^{u}-1\right) / u:=w$ and taking the exponent, one obtains the result of Theorem 2.3.

Title Page
Contents

Page 10 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] P.R. BEESACK AND J. PEČARIĆ, On Jensen's inequality for convex functions, J. Math. Anal. Appl., 110 (1985), 536-552.
[2] I. BUDIMIR, S.S. DRAGOMIR AND J. PEČARIĆ, Further reverse results for Jensen's discrete inequality and applications in information theory, J. Inequal. Pure Appl. Math., 2(1) (2001), Art. 5. [ONLINE: http: / / jipam.vu.edu. au/article.php?sid=121]
[3] S.S. DRAGOMIR, A converse result for Jensen's discrete inequality via Gruss inequality and applications in information theory, Analele Univ. Oradea. Fasc. Math., 7 (1999-2000), 178-189.
[4] D.S. MITRINOVIĆ, Analytic Inequalities, Springer, New York, 1970.
[5] S. SIMIĆ, Jensen's inequality and new entropy bounds, submitted to Appl. Math. Letters.
[6] W. SPECHT, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
[7] M. TOMINAGA, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.

On An Upper Bound
Slavko Simic
vol. 10, iss. 2, art. 60, 2009

Title Page
Contents

Page 11 of 11
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

