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ABSTRACT. We use Lyapunov functionals to obtain sufficient conditions that guarantee expo-
nential stability of the zero solution of the delay difference equation

x(t + 1) = a(t)x(t) + b(t)x(t− h).

The highlight of the paper is the relaxing of the condition|a(t)| < 1. An instability criteria for
the zero solution is obtained. Moreover, we will provide an example, in which we show that our
theorems provide an improvement of some of the recent literature.
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1. I NTRODUCTION

In this paper we consider the scalar linear difference equation with multiple delays

(1.1) x(t+ 1) = a(t)x(t) + b(t)x(t− h),

whereh ∈ Z+ anda, b : Z+ → R. In this paperR denotes the set of real numbers andZ+ de-
notes the set of positive integers. We will use Lyapunov functionals and obtain some inequalities
regarding the solutions of (1.1) from which we can deduce the exponential asymptotic stability
of the zero solution. Also, we will provide a criteria for the instability of the zero solution of
(1.1) by means of a Lyapunov functional.

Due to the choice of the Lyapunov functionals, we will deduce some inequalities on all solu-
tions. As a consequence, the exponential stability of the zero solution is concluded. Consider
thekth-order scalar difference equation

(1.2) x(t+ k) + p1x(t+ k − 1) + p2(t+ k − 2) + · · ·+ pk(t) = 0,

where thepi’s are real numbers. It is well known that the zero solution of (1.2) is asymptotically
stable if and only if|λ| < 1 for every characteristic rootλ of (1.2). There is no such criteria to
test for exponential stability of the zero solution of equations that are similar to (1.2). This itself
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highlights the importance of constructing a suitable Lyapunov function that leads to exponential
stability. This paper is devoted to constructing a Lyapunov functional that yields exponential
stability. In such instances, one faces the tedious task of relating the Lyapunov functional back
to the solutionx so that stability can be deduced. In the paper [2], the author obtained easily
verifiable conditions that guaranteed the exponential stability of an equation similar to (1.1).
Later on, the authors of [1] used a recursive approach method and improved the results of [2].
We are happy to say that we will furnish an example that will improve both the results of [2]
and [1]. There are not many papers dealing with the study of exponential stability of delay
difference equations and this paper intends to do so, in addition to improving recent results in
which Lyapunov’s method was not used.

Let ψ : [−h, 0] → (−∞,∞) be a given bounded initial function with

||ψ|| = max
−h≤s≤0

|ψ(s)|.

It should cause no confusion to denote the norm of a functionϕ : [−h,∞) → (−∞,∞) with

||ϕ|| = sup
−h≤s<∞

|ϕ(s)|.

The notationxt means thatxt(τ) = x(t + τ), τ ∈ [−h, 0] as long asx(t + τ) is defined. Thus,
xt is a function mapping an interval[−h, 0] into R. We sayx(t) ≡ x(t, t0, ψ) is a solution of
(1.1) if x(t) satisfies (1.1) fort ≥ t0 andxt0 = x(t0 + s) = ψ(s), s ∈ [−h, 0].

In preparation for our main results, we note that (1.1) is equivalent to

(1.3) 4x(t) = (a(t) + b(t+ h)− 1)x(t)−4t

t−1∑
s=t−h

b(s+ h)x(s).

We end this section with the following definition.

Definition 1.1. The zero solution of (1.1) is said to be exponentially stable if any solution
x(t, t0, ψ) of (1.1) satisfies

|x(t, t0, ψ)| ≤ C (||ψ||, t0) ζγ(t−t0), for all t ≥ t0,

whereζ is constant with0 < ζ < 1, C : R+×Z+ → R+, andγ is a positive constant. The zero
solution of (1.1) is said to be uniformly exponentially stable ifC is independent oft0.

2. EXPONENTIAL STABILITY

Now we turn our attention to the exponential decay of solutions of equation (1.1). For sim-
plicity, we let

Q(t) = b(t+ h) + a(t)− 1.

Lemma 2.1. Assume that forδ > 0,

(2.1) − δ

(δ + 1)h
≤ Q(t) ≤ −δhb2(t+ h)−Q2(t),

holds. If

(2.2) V (t) =

[
x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]2

+ δ
−1∑

s=−h

t−1∑
z=t+s

b2(z + h)x2(z),

then, based on the solutions of (1.1) we have

(2.3) 4V (t) ≤ Q(t)V (t).
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Proof. First we note that due to condition (2.1),Q(t) < 0 for all t ≥ 0. Also, we use that fact
that if u(t) is a sequence, then4u2(t) = u(t+1)4u(t)+u(t)4u(t). For more on the calculus
of difference equations we refer the reader to [3] and [4]. Letx(t) = x(t, t0, ψ) be a solution of
(1.1) and defineV (t) by (2.2). Then based on the solutions of (1.2) we have

4V (t) =

[
x(t+ 1) +

t∑
s=t−h+1

b(s+ h)

]
4

[
x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]
(2.4)

+

[
x(t) +

t−1∑
s=t−h

b(s+ h)

]
4

[
x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]

+ δ
−1∑

s=−h

(
b2(t+ h)x2(t)− b2(t+ s+ h)x2(t+ s)

)
=

[
(Q(t) + 1)x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]
Q(t)x(t)

+

[
x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]
Q(t)x(t)

+ δhb2(t+ h)x2(t)− δ
t−1∑

s=t−h

b2(s+ h)x2(s)

= Q(t)x2(t) + 2Q(t)x(t)
t−1∑

s=t−h

b(s+ h)x(s)

+
(
Q2(t) +Q(t) + δhb2(t+ h)

)
x2(t)− δ

t−1∑
s=t−h

b2(s+ h)x2(s)

= Q(t)V (t) +
(
Q2(t) +Q(t) + δhb2(t+ h)

)
x2(t)

− δQ(t)
−1∑

s=−h

t−1∑
z=t+s

b2(z + h)x2(z)

− δ
−1∑

s=−h

b2(t+ s+ h)x2(t+ s)−Q(t)

(
t−1∑

s=t−h

b(s+ h)x(s)

)2

.

In what follows we perform some calculations to simplify (2.4). First, if we letu = t+ s, then

(2.5) −δ
−1∑

s=−h

b2(t+ s+ h)x2(t+ s) = −δ
t−1∑

s=t−h

b2(s+ h)x2(s).

Also, with the aid of Hölder’s inequality, we have

(2.6)

(
t−1∑

s=t−h

b(s+ h)x(s)

)2

≤ h
t−1∑

s=t−h

b2(s+ h)x2(s).
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Invoking (2.1) and substituting expressions (2.5) – (2.6) into (2.4), yields

4V (t) ≤ Q(t)V (t) +
(
Q2(t) +Q(t) + δhb2(t+ h)

)
x2(t)(2.7)

+ [− (δ + 1)hQ(t)− δ]
t−1∑

s=t−h

b2(s+ h)x2(s)

≤ Q(t)V (t).

�

Theorem 2.2. Let the hypothesis of Lemma 2.4 hold. Suppose there exists a numberα < 1
such that

0 < b(t+ s) + a(t) ≤ α.

Then any solutionx(t) = x(t, t0, ψ) of (1.1) satisfies the exponential inequalities

(2.8) |x(t)| ≤

√√√√h+ δ

δ
V (t0)

t−1∏
s=t0

(b(s+ h) + a(s))

for t ≥ t0.

Proof. First we note that condition (2.1) implies that there exists some positive numberα < 1
such that|b(t+ s) + a(t)| < 1. Now by changing the order of summation we have

δ

−1∑
s=−h

t−1∑
z=t+s

b2(z + h)x2(z) = δ
t−1∑

z=t−h

z−1∑
s=−h

b2(z + h)x2(z)

= δ
t−1∑

z=t−h

b2(z + h)x2(z)(z − t+ h+ 1)

≥ δ
t−1∑

z=t−h

b2(z + h)x2(z),

where we have used the fact that

t− h ≤ z ≤ t− 1 =⇒ 1 ≤ z − t+ h+ 1 ≤ h.

Let V (t) be given by (2.2).(
t−1∑

z=t−h

b(z + h)x(s)

)2

≤ h
t−1∑

z=t−h

b2(z + h)x2(s).

Hence,

δ

−1∑
s=−h

t−1∑
z=t+s

b2(z + h)x2(z) ≥ δ

h

(
t−1∑

z=t−h

b(z + h)x(s)

)2

.
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Let V (t) be given by (2.2). Then

V (t) =

[
x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]2

+ δ
−1∑

s=−h

t−1∑
z=t+s

b2(z + h)x2(z)

≥

[
x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]2

+
δ

h

(
t−1∑

z=t−h

b(z + h)x(s)

)2

+
δ

h+ δ
x2(t) +

[√
h

h+ δ
x(t) +

√
h+ δ

h

t−1∑
z=t−h

b(z + h)x(s)

]2

≥ δ

h+ δ
x2(t).

Consequently,
δ

h+ δ
x2(t) ≤ V (t).

From (2.7) we get

V (t) ≤ V (t0)
t−1∏
s=t0

(b(s+ h) + a(s)) .

The results follow from the inequality

δ

h+ δ
x2(t) ≤ V (t).

This completes the proof. �

Corollary 2.3. Assume that the hypotheses of Theorem 2.2 hold. Then the zero solution of(1.1)
is exponentially stable.

Proof. From inequality (2.8) we have that

|x(t)| ≤

√√√√h+ δ

δ
V (t0)

t−1∏
s=t0

(b(s+ h) + a(s))

≤
√
h+ δ

δ
V (t0)αt−t0

for t ≥ t0. The proof is completed sinceα ∈ (0, 1). �

Next we give a simple example to show that condition (2.1) can be easily verified and more-
over, we take|a(t)| > 1.

Example 2.1.Let a = 1.2, b = −0.3, h = 1, andδ = 0.5. Then one can easily verify that (2.1)
is satisfied. Hence the zero solution of the delay difference equation

x(t+ 1) = 1.2x(t)− 0.3x(t− 1)

is exponentially stable.

It is worth mentioning that in both papers [5] and [6] it was assumed that
t−1∏
s=0

a(s) → 0, ast→∞
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for the asymptotic stability. Of course oura = 1.2 does not satisfy such a condition, and yet we
concluded exponential stability. Also, to compare our results with the results obtained in [2] we
state the following.

Lemma 2.4([2]). If there existsλ ∈ (0, 1) such that

(2.9)

∣∣∣∣∣
N∏

j=0

a(n− j) + b(n)

∣∣∣∣∣+
N∑

s=1

∣∣∣∣∣
s−1∏
j=0

a(n− j)

∣∣∣∣∣ |b(n− s)| ≤ λ,

for largen, then the zero solution of

x(n+ 1) = a(n)x(n) + b(n)x(n−N)

is globally exponentially stable.

It can be easily seen that condition (2.9) cannot be satisfied for the data given in the above
example. Next we state two major results from [2] so that we can compare them with our
example.

Lemma 2.5([1]). Let0 < γ < 1 and
∑m

l=2 |al(n)|+ |1− a1(n)| ≤ γ for n large enough. Then
the equation

(2.10) x(n+ 1)− x(n) = −a1(n)x(n)−
m∑

l=2

al(n)x(gl(n))

is exponentially stable. Heren− T ≤ gl(n) ≤ n for some integerT > 0.

Lemma 2.6 ([1]). Suppose that for someγ ∈ (0, 1) the following inequality is satisfied forn
large enough:

(2.11)
m∑

k=2

|ak(n)|
n−1∑

j=gk(n)

m∑
l=1

|al(j)|+

∣∣∣∣∣1−
m∑

k=1

ak(n)

∣∣∣∣∣ ≤ γ.

Then(2.10)is exponentially stable.

In the spirit of (2.10) we rewrite the difference equation in Example 2.1 as

x(t+ 1)− x(n) = 0.2x(t)− 0.3x(t− 1).

Then the condition in Lemma 2.6 is equivalent to

|a2(n)|+ |1− a1(n)| = 0.3 + |1 + 0.2| > 1.

Also, condition (2.11) is equivalent to

|a2(n)||a1(n)|+ |1− a1(n)| = 0.3(0.2) + |1 + 0.2| > 1.

Thus, we have demonstrated that our results improve the results of [1] and [2].
We end this paper by giving a criteria for instability via Lyapunov functionals.

3. CRITERIA FOR I NSTABILITY

In this section, we use a non-negative definite Lyapunov functional and obtain criteria that
can be easily applied to test for the instability of the zero solution of (1.1).
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Theorem 3.1.LetH > h be a constant. Assume thatQ(t) > 0 such that

(3.1) Q2(t) +Q(t)−Hb2(t+ h) ≥ 0.

If

(3.2) V (t) =

[
x(t) +

t−1∑
s=t−h

b(s+ h)x(s)

]2

−H

t−1∑
s=t−h

b2(s+ h)x2(s)

then, based on the solutions of (1.1) we have

4V (t) ≥ Q(t)V (t).

Proof. Let x(t) = x(t, t0, ψ) be a solution of (1.1) and defineV (t) by (3.2). Since the calcula-
tion is similar to the one in Lemma 2.4, we arrive at

4V (t) = Q(t)V (t) +
(
Q2(t) +Q(t)−Hb2(t+ h)

)
x2(t)(3.3)

+Hb2(t)x2(t− h)−Q(t)

(
t−1∑

s=t−h

b(s+ h)x(s)

)2

+HQ(t)
t−1∑

s=t−h

b2(s+ h)x2(s)

≥ Q(t)V (t),

where we have used(
t−1∑

s=t−h

b(s+ h)x(s)

)2

≤ h

t−1∑
s=t−h

b2(s+ h)x2(s)

≤ H
t−1∑

s=t−h

b2(s+ h)x2(s)

and (3.1). This completes the proof. �

We remark that condition (3.1) is satisfied for

Q(t) ≥
−1 +

√
1 + 4Hb2(t+ h)

2
.

Theorem 3.2. Suppose hypotheses of Theorem 3.1 hold. Then the zero solution of(1.1) is
unstable, provided that

∞∏
(b(s+ h) + a(s)) = ∞.

Proof. From (3.3) we have

(3.4) V (t) ≥ V (t0)
t−1∏
s=t0

(b(s+ h) + a(s)) .
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Let V (t) be given by (3.2). Then

(3.5) V (t) = x2(t) + 2x(t)
t−1∑
t−h

b(s+ hi)x(s) +

[
t−1∑
t−h

b(s+ hi)x(s)

]2

−H
t−1∑
t−h

b2(s+ h)x2(s).

Let β = H − h. Then from (√
h√
β
a−

√
β√
h
b

)2

≥ 0,

we have

2ab ≤ h

β
a2 +

β

h
b2.

With this in mind we arrive at,

2x(t)
t−1∑
t−h

b(s+ h)x(s) ≤ 2|x(t)|

∣∣∣∣∣
t−1∑
t−h

b(s+ h)x(s)

∣∣∣∣∣
≤ h

β
x2(t) +

β

h

[
t−1∑
t−h

b(s+ h)x(s)

]2

≤ h

β
x2(t) +

β

h
h

t−1∑
t−h

b2(s+ h)x2(s).

A substitution of the above inequality into (3.5) yields,

V (t) ≤ x2(t) +
h∗

β
x2(t) + (β + h∗ −H)

t−1∑
t−h

b2(s+ h)x2(s)

=
β + h

β
x2(t)

=
H

H − h
x2(t).

Using inequality (3.4), we get

|x(t)| ≥
√

H

H − h∗
D V 1/2(t)

=

√
H

H − h
V 1/2(t0)V (t0)

(
t−1∏
s=t0

[b(s+ h) + a(s)]

) 1
2

.

This completes the proof. According to Theorem 3.2, the zero solution of

x(t+ 1) = 0.9x(t) + 0.2x(t− 1)

is unstable whenH ≥ 1.1. �
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