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Abstract

Sufficient conditions are established for the boundedness of all solutions of
(1.1), and we also present some sufficient conditions, which ensure that the
limits of first and second order derivatives of the solutions of (1.1) tend to zero
as t → ∞. Our results improve and include those results obtained by previous
authors ([3], [5]).
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1. Introduction
We consider the third order non-linear and non-autonomous ordinary differen-
tial equation

(1.1)
...
x + f(x,

.
x,

..
x)

..
x+ g(x,

.
x) + h(x,

.
x,

..
x) = p (t, x,

.
x,

..
x)

or its equivalent system

(1.2)

.
x = y,

.
y = z,

.
z = −f(x, y, z)z − g(x, y)− h(x, y, z) + p(t, x, y, z).

It is assumed thatf, g, h and p are continuous functions which depend only
on the arguments displayed explicitly, and the dots denote differentiation with
respect tot. The derivatives∂f(x,y,z)

∂x
≡ fx(x, y, z),

∂f(x,y,z)
∂z

≡ fz(x, y, z),
∂h(x,y,z)

∂x
≡ hx(x, y, z),

∂h(x,y,z)
∂y

≡ hy(x, y, z),
∂h(x,y,z)

∂z
≡ hz(x, y, z) and∂g(x,y)

∂x
≡

gx(x, y) exist and are continuous. Moreover, the existence and the uniqueness
of the solutions of (1.1) will be assumed.

In recent years, the boundedness properties of solutions of certain non-linear
differential equations of the third order have been investigated by a large num-
ber of mathematicians, and they have obtained many results for some special
cases of the equation (1.1) with h ≡ h(x), see ([1], [4], [5], [7] – [10]) and
references therein. However, in the caseh ≡ h(x,

.
x,

..
x), the results about third

order nonlinear differential equations are relatively scarce.
In ([5], [6]), Ezeilo discussed the ultimate boundedness and the existence of

the periodic solutions of equations of the form
...
x + ψ(

.
x)

..
x+ ϕ(x)

.
x+ v(x,

.
x,

..
x) = p(t).
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Later, in a recent paper, Bereketoğlu and Györi [3] considered the differential
equation described as follows

(1.3)
...
x + f(x,

.
x)

..
x+ g(x,

.
x) + h(x,

.
x,

..
x) = p(t, x,

.
x,

..
x),

and the author established sufficient conditions under which all solutions of the
non-autonomous differential equation (1.3) are bounded and the limits of first
and second order derivatives of the solutions of (1.3) tend to zero ast→∞. In
this paper, we shall be concerned with the boundedness results of the solutions
of third-order non-linear differential equations of the form (1.1).

The motivation for the present work has come from the papers of Ezeilo ([5],
[6]), Bereketŏglu and Györi [3] and the paper mentioned above. The results
obtained herein are comparable in generality to the works of Bereketoğlu and
Györi [3] and Ezeilo [5], and our results also include and improve the results
in ([3], [5]). It should also be noted that the first result obtained here is proved
without using the boundedness ofh(x,

.
x,

..
x).
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2. Main Results
The main results of this paper are the following.

Theorem 2.1. Further to the basic assumptions on the functionsf, g, h and
p assume that the following conditions are satisfied (a, b, c, l,m andA- some
positive constants):

(i) f(x, y, z) ≥ a andab− c > 0 for all x, y, z;

(ii) g(x,y)
y

≥ b for all x, y 6= 0;

(iii) h(x,0,0)
x

≥ c for all x 6= 0;

(iv) 0 < hx(x, y, 0) ≤ c for all x, y;

(v) hy(x, y, 0) ≥ 0 for all x, y;

(vi) hz(x, y, 0) ≥ m for all x, y;

(vii) yfx(x, y, z) ≤ 0, yfz(x, y, z) ≥ 0 andgx(x, y) ≤ 0 for all x, y, z;

(viii) yzhy(x, y, 0) + ayzhz(x, y, z) ≥ 0 for all x, y, z;

(ix) |p(t, x, y, z)| ≤ e(t) for all t ≥ 0, x, y, z, where
∫ t

0
e(s)ds ≤ A <∞.
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Then given any finite numbersx0, y0, z0 there is a finite constantD =
D(x0, y0, z0) such that the unique solutionx(t) of (1.2) which is determined
by the initial conditions

(2.1) x(0) = x0, y(0) = y0, z(0) = z0

satisfies
|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D

for all t ≥ 0.

Theorem 2.2. Let all the conditions of Theorem2.1 be satisfied; in addition,
we assume thate(t) is bounded fort ≥ 0 , that is, there is a positive constant
M such that |e(t)| ≤ M for all t ≥ 0. Then every solutionx(t) of (1.2)
determined by the initial conditions (2.1) satisfies

.
x(t) → 0,

..
x(t) → 0 as →∞.

Remark 1. Theorem2.1 and Theorem2.2 contain far less restrictive condi-
tions than those established in Bereketoğlu and Györi [3, Theorem 1, Theorem
2]. Because the result established in [3] can be proved here without the as-
sumptionshy(x, y, 0) ≥ 1

4
> 0 andab+ al

4
> a2m+ c.

Remark 2. It should be noted that the functionh satisfying conditions (iii)-(vi)
essentially reduces to something likeh(x, y, z) = cx + h0(x, z). For example,
the functionh(x, y, z) := cx+ z(x2 +m) satisfies the above conditions.

The proofs of Theorem2.1 and Theorem2.2 depend on some certain fun-
damental properties of a continuously differentiable Lyapunov functionV =
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V (x, y, z) defined by:

(2.2) V (x, y, z) = a

∫ x

0

h(ξ, 0, 0)dξ + h(x, 0, 0)y

+

∫ y

0

g(x, η)dη + a

∫ y

0

f(x, η, 0)ηdη + ayz +
1

2
z2.

Namely, this function and its time derivative satisfy some fundamental inequal-
ities.

In the subsequent discussion we require the following lemmas.

Lemma 2.3. Subject to the assumptions (i)-(vi) of Theorem2.1, V (0, 0, 0) = 0
and there is a positive constantK depending only ona, b andc such that

(2.3) V (x, y, z) ≥ K(x2 + y2 + z2)

for all x, y, z.

Proof. It is clear thatV (0, 0, 0) = 0. Sincehx(x, y, z) ≤ c, g(x,y)
y

≥ b (y 6= 0)

andf(x, y, z) ≥ a, the functionV (x, y, z) can be rearranged as follows (for
y 6= 0):

V (x, y, z)(2.4)

≥ a

∫ x

0

h(ξ, 0, 0)dξ + h(x, 0, 0)y +
b

2
y2 +

1

2
a2y2 + ayz +

1

2
z2

=
1

2b
[by + h(x, 0, 0)]2 +

1

2
[ay + z]2

+
1

2by2

{
4

∫ x

0

h(ξ, 0, 0)

[∫ y

0

(ab− hξ(ξ, 0, 0))ηdη

]
dξ

}
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≥ 1

2b
[by + h(x, 0, 0)]2 +

1

2
[ay + z]2

+
1

2by2

{
4

∫ x

0

h(ξ, 0, 0)

[∫ y

0

(ab− c)ηdη

]
dξ

}
, (for y 6= 0) .

Now, it is obvious from (2.4) that the functionV (x, y, z) defined in (2.2) is a
positive definite function which has infinite inferior limit and infinitesimal upper
limit. Hence, there is a positive constantK such that

V (x, y, z) ≥ K(x2 + y2 + z2).

The proof of this lemma is now complete.

Lemma 2.4. Under the assumptions of Theorem2.1, there are positive con-
stantsD1 andD2 depending only ona andm such that, if(x(t), y(t), z(t)) is
any solution of (1.2), then

(2.5)
.

V =
d

dt
V (x(t), y(t), z(t)) ≤ −D1(y

2 + z2) +D2(|y|+ |z|)e(t).

Proof. An easy calculation from (2.2) and (1.2) yields that

(2.6)
.

V = y2hx(x, 0, 0) + y

∫ y

0

gx(x, η)dη

+ ay

∫ y

0

fx(x, η, 0)ηdη + az2 − f(x, y, z)z2 − ayg(x, y)

−W1 −W2 −W3 + (ay + z)p(t, x, y, z),

http://jipam.vu.edu.au/
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where

W1 = af(x, y, z)yz − af(x, y, 0)yz,

W2 = −h(x, 0, 0)z + h(x, y, z)z,

W3 = −ayh(x, 0, 0) + ayh(x, y, z).

By (vii), we get

y

∫ y

0

gx(x, η)dη ≤ 0, y

∫ y

0

fx(x, η, 0)ηdη ≤ 0.

It also follows from (vii), forz 6= 0, that

W1 = ayz2

[
f(x, y, z)− f(x, y, 0)

z

]
= yz2fz(x, y, θ1z) ≥ 0, 0 ≤ θ1 ≤ 1,

butW1 = 0 whenz = 0. Hence

W1 ≥ 0 for all x, y, z.

Similarly, it is clear that

W2 = yzhy(x, θ2y, 0) + z2hz(x, y, θ3z) , 0 ≤ θ2 ≤ 1, 0 ≤ θ3 ≤ 1

W3 = ay2hy(x, θ4y, 0) + ayzhz(x, y, θ5z), 0 ≤ θ4 ≤ 1, 0 ≤ θ5 ≤ 1.

Then, combining the estimates forW1,W2,W3 with (2.6) we obtain
.

V ≤ y2hx(x, 0, 0)− yzhy(x, θ2y, 0)

− z2hz(x, y, θ3z)− ay2hy(x, θ4y, 0)− ayzhz(x, y, θ5z) + az2

− f(x, y, z)z2 − ayg(x, y) + (ay + z)p(t, x, y, z).
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The assumption (viii) shows that

(2.7)
.

V ≤ −ay2hy(x, θ4y, 0) + y2hx(x, 0, 0)− z2hz(x, y, θ3z)

+ az2 − f(x, y, z)z2 − ayg(x, y) + (ay + z)p(t, x, y, z).

Also under the assumptions of the theorem we have

−ay2hy(x, θ4y, 0) ≤ 0 for all x, y;

y2hx(x, 0, 0) ≤ cy2 for all x, y;

−z2hz(x, y, θ3z) ≤ −mz2 for all x, y, z;

−f(x, y, z)z2 ≤ −az2 for all x, y, z;

−ayg(x, y) ≤ −aby2 for all x, y;

(ay + z)p(t, x, y, z) ≤ |ay + z| |p(t, x, y, z)|
≤ (a |y|+ |z|)e(t)
≤ max {a, 1} (|y|+ |z|)e(t).

Now, letD1 = min {ab− c,m} andD2 = max {a, 1} .
From the estimates just stated above and (2.7) we obtain

.

V ≤ −(ab− c)y2 −mz2 + max {a, 1} (|y|+ |z|)e(t)
≤ −D1(y

2 + z2) +D2(|y|+ |z|)e(t).

This completes the proof of the lemma.
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Lemma 2.5. Let f be a non-negative function defined on[0,∞) such thatf is
integrable on[0,∞) and uniformly continuous on[0,∞). Then

lim
t→∞

f(t) = 0.

Proof. See ([2]).
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3. Proof of Theorems
Proof of Theorem2.1. Consider the Lyapunov functionV (x, y, z) defined by
(2.2). By Lemma2.3, it is obvious that

V (x, y, z) = 0, atx2 + y2 + z2 = 0,

V (x, y, z) > 0, if x2 + y2 + z2 6= 0,

V (x, y, z) →∞, asx2 + y2 + z2 →∞.

Next suppose(x(t), y(t), z(t)) is any solution of (1.2) which satisfies the initial
conditions

x(0) = x0, y(0) = y0, z(0) = z0.

Set
V (t) ≡ V (x(t), y(t), z(t)).

Then just as in Lemma2.4,
.

V ≤ −D1(y
2 + z2) +D2(|y|+ |z|)e(t),

so that .

V ≤ D2(|y|+ |z|)e(t).
It follows from the obvious inequalities

|y| < 1 + y2, |z| < 1 + z2

and

y2 + z2 ≤ 1

K
V (x, y, z)

http://jipam.vu.edu.au/
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that
.

V (t) ≤ D2(2 + y2 + z2)e(t)

≤ D2

K
e(t)V (t) + 2D2e(t).

Integrating both sides of this inequality between0 and t (t ≥ 0) and using
Gronwall-Reid-Bellman inequality, we obtain

V (t) ≤ 1

χ(t)

(
V (0) + 2D2

∫ t

0

χ(s)e(s)ds

)
,

where

χ(t) = exp

(
−D2

K

∫ t

0

e(s)ds

)
.

Sinceχ(t) ≤ 1, and using (ix) we have

V (t) ≤ (V (0) + 2D2A) exp

(
D2

K
A

)
for t ≥ 0.

As V (0) = V (x0, y0, z0), this completes the proof.

Proof of Theorem2.2. The proof of this theorem is similar to that of Bereke-
toğlu and Györi [3, Theorem 2] and hence it is omitted.
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