CERTAIN SUBCLASSES OF p-VALENTLY CLOSE-TO-CONVEX FUNCTIONS

OH SANG KWON

Department of Mathematics
KyUngsung University
BUSAN 608-736, Korea
oskwon@ks.ac.kr
Received 28 May, 2007; accepted 14 October, 2007
Communicated by G. Kohr

AbSTRACT. The object of the present paper is to drive some properties of certain class $K_{n, p}(A, B)$ of multivalent analytic functions in the open unit disk E.

Key words and phrases: p-valently starlike functions of order α, p-valently close-to-convex functions of order α, subordination, hypergeometric series.

2000 Mathematics Subject Classification. 30C45.

1. Introduction

Let A_{p} be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $E=\{z \in \mathbb{C}:|z|<1\}$. A function $f \in A_{p}$ is said to be p-valently starlike of order α of it satisfies the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(0 \leq \alpha<p, z \in E)
$$

We denote by $S_{p}^{*}(\alpha)$.
On the other hand, a function $f \in A_{p}$ is said to be p-valently close-to-convex functions of order α if it satisfies the condition

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\alpha \quad(0 \leq \alpha<p, z \in E)
$$

for some starlike function $g(z)$. We denote by $C_{p}(\alpha)$.

[^0]For $f \in A_{p}$ given by (1.1), the generalized Bernardi integral operator F_{c} is defined by

$$
\begin{align*}
F_{c}(z) & =\frac{c+p}{z^{c}} \int_{0}^{z} f(t) t^{c-1} d t \\
& =z^{p}+\sum_{k=1}^{\infty} \frac{c+p}{c+p+k} a_{p+k} z^{p+k} \quad(c+p>0, z \in E) . \tag{1.2}
\end{align*}
$$

For an analytic function g, defined in E by

$$
g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k}
$$

Flett [3] defined the multiplier transform I^{η} for a real number η by

$$
I^{\eta} g(z)=\sum_{k=0}^{\infty}(p+k+1)^{-\eta} b_{p+k} z^{p+k} \quad(z \in E)
$$

Clearly, the function $I^{\eta} g$ is analytic in E and

$$
I^{\eta}\left(I^{\mu} g(z)\right)=I^{\eta+\mu} g(z)
$$

for all real numbers η and μ.
For any integer n, J. Patel and P. Sahoo [5] also defined the operator D^{n}, for an analytic function f given by (1.1), by

$$
\begin{align*}
D^{n} f(z) & =z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k+1}{1+p}\right)^{-n} a_{p+k} z^{p+k} \\
& =f(z) * z^{p-1}\left[z+\sum_{k=1}^{\infty}\left(\frac{k+1+p}{1+p}\right)^{-n} z^{k+1}\right] \quad(z \in E) \tag{1.3}
\end{align*}
$$

where $*$ stands for the Hadamard product or convolution.
It follows from (1.3) that

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime n-1} f(z)-D^{n} f(z) \tag{1.4}
\end{equation*}
$$

We also have

$$
D^{0} f(z)=f(z) \quad \text { and } \quad D^{-1} f(z)=\frac{z f^{\prime}(z)+f(z)}{p+1}
$$

If f and g are analytic functions in E, then we say that f is subordinate to g, written $f<g$ or $f(z)<g(z)$, if there is a function w analytic in E, with $w(0)=0,|w(z)|<1$ for $z \in E$, such that $f(z)=g(w(z))$, for $z \in U$. If g is univalent then $f<g$ if and only if $f(0)=g(0)$ and $f(E) \subset g(E)$.

Making use of the operator notation D^{n}, we introduce a subclass of A_{p} as follows:
Definition 1.1. For any integer n and $-1 \leq B<A \leq 1$, a function $f \in A_{p}$ is said to be in the class $K_{n, p}(A, B)$ if

$$
\begin{equation*}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{z^{p}}<\frac{p(1+A z)}{1+B z} \tag{1.5}
\end{equation*}
$$

where $<$ denotes subordination.
For convenience, we write

$$
K_{n, p}\left(1-\frac{2 \alpha}{p},-1\right)=K_{n, p}(\alpha)
$$

where $K_{n, p}(\alpha)$ denote the class of functions $f \in A_{p}$ satisfying the inequality

$$
\operatorname{Re}\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{z^{p}}\right\}>\alpha \quad(0 \leq \alpha<p, z \in E)
$$

We also note that $K_{0, p}(\alpha) \equiv C_{p}(\alpha)$ is the class of p-valently close-to-convex functions of order α.

In this present paper, we derive some properties of a certain class $K_{n, p}(A, B)$ by using differential subordination.

2. Preliminaries and Main Results

In our present investigation of the general class $K_{n, p}(A, B)$, we shall require the following lemmas.

Lemma 2.1 ([4]). If the function $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ is analytic in $E, h(z)$ is convex in E with $h(0)=1$, and γ is complex number such that $\operatorname{Re} \gamma>0$. Then the Briot-Bouquet differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma}<h(z)
$$

implies

$$
p(z)<q(z)=\frac{\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} h(t) d t<h(z) \quad(z \in E)
$$

and $q(z)$ is the best dominant.
For complex numbers a, b and $c \neq 0,-1,-2, \ldots$, the hypergeometric series

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=1+\frac{a b}{c} z+\frac{a(a+1) b(b+1)}{2!c(c+1)} z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

represents an analytic function in E. It is well known by [1] that
Lemma 2.2. Let a, b and c be real $c \neq 0,-1,-2, \ldots$ and $c>b>0$. Then

$$
\begin{gather*}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z) \\
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)={ }_{2} F_{1}(b, a ; c ; z) \tag{2.3}
\end{equation*}
$$

Lemma $2.3([6])$. Let $\phi(z)$ be convex and $g(z)$ is starlike in E. Then for F analytic in E with $F(0)=1, \frac{\phi * F g}{\phi * g}(E)$ is contained in the convex hull of $F(E)$.

Lemma 2.4 ([[2]). Let $\phi(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k}$ and $\phi(z)<\frac{1+A z}{1+B z}$. Then

$$
\left|c_{k}\right| \leq(A-B)
$$

Theorem 2.5. Let n be any integer and $-1 \leq B<A \leq 1$. If $f \in K_{n, p}(A, B)$, then

$$
\begin{equation*}
\frac{z\left(D^{n+1} f(z)\right)^{\prime}}{z^{p}}<q(z)<\frac{p(1+A z)}{1+B z} \quad(z \in E), \tag{2.4}
\end{equation*}
$$

where

$$
q(z)= \begin{cases}{ }_{2} F_{1}(1, p+1 ; p+2 ;-B z) & \tag{2.5}\\ \quad+\frac{p+1}{p+2} A z_{2} F_{1}(1, p+2 ; p+3 ;-B z), & B \neq 0 ; \\ 1+\frac{p+1}{p+2} A z, & B=0,\end{cases}
$$

and $q(z)$ is the best dominant of (2.4). Furthermore, $f \in K_{n+1, p}(\rho(p, A, B))$, where

$$
\rho(p, A, B)= \begin{cases}p_{2} F_{1}(1, p+1 ; p+2 ; B) & \tag{2.6}\\ -\frac{p(p+1)}{p+2} A_{2} F_{1}(1, p+2 ; p+3 ; B), & B \neq 0 \\ 1-\frac{p+1}{p+2} A, & B=0\end{cases}
$$

Proof. Let

$$
\begin{equation*}
p(z)=\frac{z\left(D^{n+1} f(z)\right)^{\prime}}{p z^{p}} \tag{2.7}
\end{equation*}
$$

where $p(z)$ is analytic function with $p(0)=1$.
Using the identity (1.4) in (2.7) and differentiating the resulting equation, we get

$$
\begin{equation*}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{p z^{p}}=p(z)+\frac{z p^{\prime}(z)}{p+1}<\frac{1+A z}{1+B z}(\equiv h(z)) . \tag{2.8}
\end{equation*}
$$

Thus, by using Lemma 2.1 (for $\gamma=p+1$), we deduce that

$$
\begin{align*}
p(z) & <(p+1) z^{-(p+1)} \int_{0}^{z} \frac{t^{p}(1+A t)}{1+B t} d t(\equiv q(z)) \\
& =(p+1) \int_{0}^{1} \frac{s^{p}(1+A s z)}{1+B s z} d s \\
& =(p+1) \int_{0}^{1} \frac{s^{p}}{1+B s z} d s+(p+1) A z \int_{0}^{1} \frac{s^{p+1}}{1+B s z} d s . \tag{2.9}
\end{align*}
$$

By using (2.2) in (2.9), we obtain

$$
p(z)<q(z)= \begin{cases}{ }_{2} F_{1}(1, p+1 ; p+2 ;-B z) & \\ \quad+\frac{p+1}{p+2} A z_{2} F_{1}(1, p+2 ; p+3 ;-B z), & B \neq 0 \\ 1+\frac{p+1}{p+2} A z, & B=0\end{cases}
$$

Thus, this proves (2.5).
Now, we show that

$$
\begin{equation*}
\operatorname{Re} q(z) \geq q(-r) \quad(|z|=r<1) \tag{2.10}
\end{equation*}
$$

Since $-1 \leq B<A \leq 1$, the function $(1+A z) /(1+B z)$ is convex(univalent) in E and

$$
\operatorname{Re}\left(\frac{1+A z}{1+B z}\right) \geq \frac{1-A r}{1-B r}>0 \quad(|z|=r<1)
$$

Setting

$$
g(s . z)=\frac{1+A s z}{1+B s z} \quad(0 \leq s \leq 1, \quad z \in E)
$$

and $d \mu(s)=(p+1) s^{p} d s$, which is a positive measure on $[0,1]$, we obtain from 2.9) that

$$
q(z)=\int_{0}^{1} g(s, z) d \mu(s) \quad(z \in E)
$$

Therefore, we have

$$
\operatorname{Re} q(z)=\int_{0}^{1} \operatorname{Re} g(s, z) d \mu(s) \geq \int_{0}^{1} \frac{1-A s r}{1-B s r} d \mu(s)
$$

which proves the inequality (2.10).
Now, using (2.10) in (2.9) and letting $r \rightarrow 1^{-}$, we obtain

$$
\operatorname{Re}\left\{\frac{z\left(D^{n+1} f(z)\right)^{\prime}}{z^{p}}\right\}>\rho(p, A, B)
$$

where

$$
\rho(p, A, B)= \begin{cases}p_{2} F_{1}(1, p+1 ; p+2 ; B) & \\ -\frac{p(p+1)}{p+2} A_{2} F_{1}(1, p+2 ; p+3 ; B), & B \neq 0 \\ p-\frac{p(p+1)}{p+2} A, & B=0\end{cases}
$$

This proves the assertion of Theorem 2.5. The result is best possible because of the best dominant property of $q(z)$.
Putting $A=1-\frac{2 \alpha}{p}$ and $B=-1$ in Theorem 2.5, we have the following:
Corollary 2.6. For any integer n and $0 \leq \alpha<p$, we have

$$
K_{n, p}(\alpha) \subset K_{n+1, p}(\rho(p, \alpha)),
$$

where

$$
\begin{equation*}
\rho(p, \alpha)=p \cdot{ }_{2} F_{1}(1, p+1 ; p+2 ;-1)-\frac{p(p+1)}{p+2}(1-2 \alpha)_{2} F_{1}(1, p+2 ; p+3 ;-1) . \tag{2.11}
\end{equation*}
$$

The result is best possible.
Taking $p=1$ in Corollary [2.6, we have the following:
Corollary 2.7. For any integer n and $0 \leq \alpha<1$, we have

$$
K_{n}(\delta) \subset K_{n+1}(\delta(\alpha)),
$$

where

$$
\begin{equation*}
\delta(\alpha)=1+4(1-2 \alpha) \sum_{k=1}^{\infty} \frac{1}{k+2}(-1)^{k} . \tag{2.12}
\end{equation*}
$$

Theorem 2.8. For any integer n and $0 \leq \alpha<p$, if $f(z) \in K_{n+1, p}(\alpha)$, then $f \in K_{n, p}(\alpha)$ for $|z|<R(p)$, where $R(p)=\frac{-1+\sqrt{1+(p+1)^{2}}}{p+1}$. The result is best possible.
Proof. Since $f(z) \in K_{n+1, p}(\alpha)$, we have

$$
\begin{equation*}
\frac{z\left(D^{n+1} f(z)\right)^{\prime}}{z^{p}}=\alpha+(p-\alpha) w(z), \quad(0 \leq \alpha<p) \tag{2.13}
\end{equation*}
$$

where $w(z)=1+w_{1} z+w_{2} z+\cdots$ is analytic and has a positive real part in E. Making use of logarithmic differentiation and using identity (1.4) in (2.13), we get

$$
\begin{equation*}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{z^{p}}-\alpha=(p-\alpha)\left[w(z)+\frac{z w^{\prime}(z)}{p+1}\right] . \tag{2.14}
\end{equation*}
$$

Now, using the well-known (by [5])

$$
\frac{\left|z w^{\prime}(z)\right|}{\operatorname{Re} w(z)} \leq \frac{2 r}{1-r^{2}} \quad \text { and } \quad \operatorname{Re} w(z) \geq \frac{1-r}{1+r} \quad(|z|=r<1)
$$

in (2.14), we get

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{z^{p}}-\alpha\right\} & =(p-\alpha) \operatorname{Re} w(z)\left\{1+\frac{1}{p+1} \frac{\operatorname{Re} z w^{\prime}(z)}{\operatorname{Re} w(z)}\right\} \\
& \geq(p-\alpha) \operatorname{Re} w(z)\left\{1-\frac{1}{p+1} \frac{\left|z w^{\prime}(z)\right|}{\operatorname{Re} w(z)}\right\} \\
& \geq(p-\alpha) \frac{1-r}{1+r}\left\{1-\frac{1}{p+1} \frac{2 r}{1-r^{2}}\right\} .
\end{aligned}
$$

It is easily seen that the right-hand side of the above expression is positive if $|z|<R(p)=$ $\frac{-1+\sqrt{1+(p+1)^{2}}}{p+1}$. Hence $f \in K_{n, p}(\alpha)$ for $|z|<R(p)$.
To show that the bound $R(p)$ is best possible, we consider the function $f \in A_{p}$ defined by

$$
\frac{z\left(D^{n+1} f(z)\right)^{\prime}}{z^{p}}=\alpha+(p-\alpha) \frac{1-z}{1+z} \quad(z \in E)
$$

Noting that

$$
\begin{aligned}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{z^{p}}-\alpha & =(p-\alpha) \cdot \frac{1-z}{1+z}\left\{1+\frac{1}{p+1} \frac{-2 z}{(p+1)\left(1-z^{2}\right)}\right\} \\
& =(p-\alpha) \cdot \frac{1-z}{1+z}\left\{\frac{(p+1)-(p+1) z^{2}-2 z}{(p+1)-(p+1) z^{2}}\right\} \\
& =0
\end{aligned}
$$

for $z=\frac{-1+\sqrt{1+(p+1)^{2}}}{p+1}$, we complete the proof of Theorem 2.8 .
Putting $n=-1, p=1$ and $0 \leq \alpha<1$ in Theorem 2.8, we have the following:
Corollary 2.9. If $\operatorname{Re} f^{\prime}(z)>\alpha$, then $\operatorname{Re}\left\{z f^{\prime \prime}(z)+2 f^{\prime}(z)\right\}>\alpha$ for $|z|<\frac{-1+\sqrt{5}}{2}$.

Theorem 2.10.

(a) If $f \in K_{n, p}(A, B)$, then the function F_{c} defined by (1.2) belongs to $K_{n, p}(A, B)$.
(b) $f \in K_{n, p}(A, B)$ implies that $F_{c} \in K_{n, p}(\eta(p,, c, A, B))$ where

$$
\eta(p, c, A, B)= \begin{cases}p_{2} F_{1}(1, p+c ; p+c+1 ; B) & \\ -\frac{p(p+c)}{p+c+1} A_{2} F_{1}(1, p+c+1 ; p+c+2 ; B), & B \neq 0 \\ p-\frac{p(p+c)}{p+c+1} A, & B=0\end{cases}
$$

Proof. Let

$$
\begin{equation*}
\phi(z)=\frac{z\left(D^{n} F_{c}(z)\right)^{\prime}}{p z^{p}} \tag{2.15}
\end{equation*}
$$

where $\phi(z)$ is an analytic function with $\phi(0)=1$. Using the identity

$$
\begin{equation*}
z\left(D^{n} F_{c}(z)\right)^{\prime n} f(z)-c D^{n} F_{c}(z) \tag{2.16}
\end{equation*}
$$

in (2.15) and differentiating the resulting equation, we get

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{p z^{p}}=\phi(z)+\frac{z \phi^{\prime}(z)}{p+c} .
$$

Since $f \in K_{n, p}(A, B)$,

$$
\phi(z)+\frac{z \phi^{\prime}(z)}{p+c}<\frac{1+A z}{1+B z} .
$$

By Lemma 2.1, we obtain $F_{c}(z) \in K_{n, p}(A, B)$. We deduce that

$$
\begin{equation*}
\phi(z)<q(z)<\frac{1+A z}{1+B z} \tag{2.17}
\end{equation*}
$$

where $q(z)$ is given by 2.5 and is the best dominant of (2.17).
This proves part (a) of the theorem. Proceeding as in Theorem 2.10, part (b) follows.
Putting $A=1-\frac{2 \alpha}{p}$ and $B=-1$ in Theorem 2.8 , we have the following:
Corollary 2.11. If $f \in K_{n, p}(A, B)$ for $0 \leq \alpha<p$, then $F_{c} \in K_{n, p} \mathcal{H}(p, c, \alpha)$, where

$$
\begin{aligned}
& \mathcal{H}(p, c, \alpha)=p \cdot{ }_{2} F_{1}(1, p+c ; p+c+1 ;-1) \\
& \quad-\frac{p+c}{p+c+1}(p-2 \alpha)_{2} F_{1}(1, p+c ; p+c+1 ;-1)
\end{aligned}
$$

Setting $c=p=1$ in Theorem 2.10, we get the following result.
Corollary 2.12. If $f \in K_{n, p}(\alpha)$ for $0 \leq \alpha<1$, then the function

$$
G(z)=\frac{2}{z} \int_{0}^{z} f(t) d t
$$

belongs to the class $K_{n}(\delta(\alpha))$, where $\delta(\alpha)$ is given by (2.12).
Theorem 2.13. For any integer n and $0 \leq \alpha<p$ and $c>-p$, if $F_{c} \in K_{n, p}(\alpha)$ then the function f defined by (1.1) belongs to $K_{n, p}(\alpha)$ for $|z|<R(p, c)=\frac{-1+\sqrt{1+(p+c)^{2}}}{p+c}$. The result is best possible.

Proof. Since $F_{c} \in K_{n, p}(\alpha)$, we write

$$
\begin{equation*}
\frac{z\left(D^{n} F_{c}\right)^{\prime}}{z^{p}}=\alpha+(p-\alpha) w(z), \tag{2.18}
\end{equation*}
$$

where $w(z)$ is analytic, $w(0)=1$ and $\operatorname{Re} w(z)>0$ in E. Using (2.16) in 2.18) and differentiating the resulting equation, we obtain

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{z^{p}}-\alpha\right\}=(p-\alpha) \operatorname{Re}\left\{w(z)+\frac{z w^{\prime}(z)}{p+c}\right\} . \tag{2.19}
\end{equation*}
$$

Now, by following the line of proof of Theorem 2.8, we get the assertion of Theorem 2.13.
Theorem 2.14. Let $f \in K_{n, p}(A, B)$ and $\phi(z) \in A_{p}$ convex in E. Then

$$
(f * \phi(z))(z) \in K_{n, p}(A, B) .
$$

Proof. Since $f(z) \in K_{n, p}(A, B)$,

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{p z^{p}}<\frac{1+A z}{1+B z}
$$

Now

$$
\begin{align*}
\frac{z\left(D^{n}(f * \phi)(z)\right)^{\prime}}{p z^{p} * \phi(z)} & =\frac{\phi(z) * z\left(D^{n} f\right)^{\prime}}{\phi(z) * p z^{p}} \\
& =\frac{\phi(z) * \frac{z\left(D^{n} f(z)\right)^{\prime}}{p z^{p}} p z^{p}}{\phi(z) * p z^{p}} . \tag{2.20}
\end{align*}
$$

Then applying Lemma 2.3, we deduce that

$$
\frac{\phi(z) * \frac{z\left(D^{n} f(z)\right)^{\prime}}{p z^{p}} p z^{p}}{\phi(z) * p z^{p}}<\frac{1+A z}{1+B z}
$$

Hence $(f * \phi(z))(z) \in K_{n, p}(A, B)$.
Theorem 2.15. Let a function $f(z)$ defined by (1.1) be in the class $K_{n, p}(A, B)$. Then

$$
\begin{equation*}
\left|a_{p+k}\right| \leq \frac{p(A-B)(p+k+1)^{n}}{(1+p)^{n}(p+k)} \quad \text { for } \quad k=1,2, \ldots \tag{2.21}
\end{equation*}
$$

The result is sharp.
Proof. Since $f(z) \in K_{n, p}(A, B)$, we have

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{p z^{p}} \equiv \phi(z) \quad \text { and } \quad \phi(z)<\frac{1+A z}{1+B z}
$$

Hence

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime p} \phi(z) \quad \text { and } \quad \phi(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k} \tag{2.22}
\end{equation*}
$$

From (2.22), we have

$$
\begin{aligned}
z\left(D^{n} f(z)\right)^{\prime} & =z\left(z^{p}+\sum_{k=1}^{\infty}\left(\frac{1+p}{p+k+1}\right)^{n} a_{p+k} z^{p+k}\right)^{\prime} \\
& =p z^{p}+\sum_{k=1}^{\infty}\left(\frac{1+p}{p+k+1}\right)^{n}(p+k) a_{p+k} z^{p+k} \\
& =p z^{p}\left(1+\sum_{k=1}^{\infty} c_{k} z^{k}\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left(\frac{1+p}{p+k+1}\right)^{n}(p+k) a_{p+k}=p c_{k} \tag{2.23}
\end{equation*}
$$

By using Lemma 2.4 in (2.23),

$$
\frac{\left(\frac{1+p}{p+k+1}\right)^{n}(p+k)\left|a_{p+k}\right|}{p}=\left|c_{k}\right| \leq A-B .
$$

Hence

$$
\left|a_{p+k}\right| \leq \frac{p(A-B)(p+k+1)^{n}}{(1+p)^{n}(p+k)}
$$

The equality sign in (2.21) holds for the function f given by

$$
\begin{equation*}
\left(D^{n} f(z)\right)^{\prime}=\frac{p z^{p-1}+p(A-B-1) z^{p}}{1-z} \tag{2.24}
\end{equation*}
$$

Hence

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{p z^{p}}=\frac{1+(A-B-1) z}{1-z}<\frac{1+A z}{1+B z} \quad \text { for } k=1,2, \ldots
$$

The function $f(z)$ defined in 2.24 has the power series representation in E,

$$
f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{p(A-B)(p+k+1)^{n}}{(1+p)^{n}(p+k)} z^{p+k} .
$$

References

[1] M. ABRAMOWITZ and I.A. STEGUN, Hand Book of Mathematical Functions, Dover Publ. Inc., New York, (1971).
[2] V. ANH, k-fold symmetric starlike univalent function, Bull. Austrial Math. Soc., 32 (1985), 419-436.
[3] T.M. FLETT, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl., 38 (1972), 746-765.
[4] S.S. MILLER AND P.T. MOCANU, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[5] J. PATEL and P. SAHOO, Certain subclasses of multivalent analytic functions, Indian J. Pure. Appl. Math., 34(3) (2003), 487-500.
[6] St. RUSCHEWEYH and T. SHEIL-SMALL, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment Math. Helv., 48 (1973), 119-135.

[^0]: This research was supported by Kyungsung University Research Grants in 2006.
 174-07

