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ABSTRACT. Ebrahim and Pellery [7] and Ebrahim [4] proposed the Shannon residual entropy
function as a dynamic measure of uncertainty. In this paper we introduce and study a generalized
information measure for residual lifetime distributions. It is shown that the proposed measure
uniquely determines the distribution function. Also, characterization results for some lifetime
distributions are discussed. Some discrete distribution results are also addressed.
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1. I NTRODUCTION

Let X be an absolutely continuous non-negative variable describing the random lifetime of a
component. Letf(x) be the probability density function,F (x) be the cumulative distribution
andR(x) be the survival function of the random variableX. A classical measure of uncertainty
for X is the differential entropy, also known as the Shannon information measure, defined as

(1.1) H(X) = −
∫ ∞

0

f(x) log f(x)dx.

If X is a discrete random variable taking valuesx1, x2, ..., xn with respective probabilities
p1, p2, ..., pn, then Shannon’s entropy is defined as

(1.2) H(P ) = H(p1, p2, ..., pn) = −
n∑

k=1

pk log(pk).

Renyi [11] generalized (1.1) and defined the measure

(1.3) Hα(X) =
1

α(1− α)
log

∫ ∞

0

fα(x)dx, α > 1
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and in the discrete case

(1.4) Hα(X) =
1

α(1− α)
log

n∑
k=1

pα
k , α > 1.

Furthermore, in the continous case

(1.5) lim
α→1

Hα(X) = −
∫ ∞

0

f(x) log f(x)dx = H(X)

and in discrete case

(1.6) lim
α→1

Hα(X) = −
n∑

k=1

pk log(pk) = H(P ),

which is Shannon’s entropy in both cases.
The role of differential entropy as a measure of uncertainty in residual lifetime distributions

has attracted increasing attention in recent years. As stated by Ebrahimi [4], the residual entropy
at a timet of a random life timeX is defined as the differential entropy of(X/X > t). Formally,
for all t > 0, the residual entropy ofX is given by

(1.7) H(X; t) = −
∫ ∞

t

f(x)

R(t)
log

f(x)

R(t)
dx

or

H(X; t) = 1− 1

R(t)

∫ ∞

t

f(x) log h(x)dx,

whereh(t) = f(t)
R(t)

is the hazard function or failure rate of the random variableX. Given that
an item has survived up tot, H(X; t) measures the uncertainty of the remaining lifetime of the
component.

In the case of a discrete random variable, we have

(1.8) H(tj) = −
n∑

k=j

P (tk)

R(tj)
log

P (tk)

R(tj)
,

whereR(t) is the reliability function of the random variableX.
Nair and Rajesh [9] studied the characterization of lifetime distributions by using the resid-

ual entropy function corresponding to the Shannon’s entropy. In this sequel, we investigate
the problem of the characterization of a lifetime distribution using the following generalized
residual entropy function:

(1.9) Hα(X; t) =
1

α(1− α)
log

(∫∞
t

fα(x)dx

Rα(t)

)
, α > 1.

As α→ 1, (1.9) reduces to (1.7).
The measure (1.9) is the residual life entropy corresponding to (1.3).

2. CHARACTERIZATION OF DISTRIBUTIONS

2.1. Continuous Case.Let X be a continuous non-negative random variable representing
component failure time with failure distributionF (t) = P (X ≤ t) and survival function
R(t) = 1− F (t) with R(0) = 1. We define the generalized entropy for residual life as

(2.1) Hα(X; t) =
1

α(1− α)
log

(∫∞
t

fα(x)dx

Rα(t)

)
, α > 1
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and so

(2.2)
∫ ∞

t

fα(x)dx = Rα(t) exp (α(1− α)Hα(X; t)) , α > 1.

We now show thatHα(X; t) uniquely determinesR(t).

Theorem 2.1.If X has an absolutely continuous distributionF (t) with reliability functionR(t)
and an increasing residual entropyHα(X; t), thenHα(X; t) uniquely determinesR(t).

Proof. Differentiating (2.2) with respect tot, we have

(2.3) hα(t) = αh(t) exp (α(1− α)Hα(X; t))

− (α)(1− α) exp (α(1− α)Hα(X; t)) H ′
α(X; t),

whereh(t) = f(t)
R(t)

is the failure rate function.
Hence for a fixedt > 0, h(t) is a solution of

(2.4) g(x) = (x)α − αx exp (α(1− α)Hα(X; t))

+ α(1− α) exp (α(1− α)Hα(X; t)) H ′
α(X; t) = 0.

Differentiating both sides with respect tox, we have

(2.5) g′(x) = α(x)α−1 − α exp (α(1− α)Hα(X; t)) .

Now for α > 1, g(0) ≤ 0, g(∞) = ∞, g(x) first decreases and then increases with minimum
atxt = exp (−αHα(X; t)) .

So, the unique solution tog(x) = 0 is given byx = h(t). ThusHα(X; t) determinesh(t)
uniquely and hence determinesR(t) uniquely. �

Theorem 2.2.The uniform distribution over(a, b), a < b can be characterized by a decreasing
generalized residual entropyHα(X; t) = 1

α
log(b− t), b > t.

Proof. For the case of uniform distribution over(a, b), a < b, we have

(2.6) Hα(X; t) =
1

α
log(b− t), b > t

which is decreasing int.
Also, xt = exp (−αHα(X; t)), therefore,

g(xt) = (xt)
α − αxt exp (α(1− α)Hα(X; t)) + α(1− α) exp (α(1− α)Hα(X; t)) H ′

α(X; t)

= 0.

HenceHα(X; t) = 1
α

log(b− t) is the unique solution tog(xt) = 0, which proves the theorem.
�

Theorem 2.3.LetX be a random variable having a generalized residual entropy of the form

(2.7) Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

whereh(t) is the failure rate function ofX. ThenX has

(i) an exponential distribution iffk = 1
α
,

(ii) a Pareto distribution iffk < 1
α

and
(iii) a finite range distribution iffk > 1

α
.
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Proof. (i) Let X have the exponential distribution,

f(t) =
1

θ
exp

(
−

(
t

θ

))
, t > 0, θ > 0.

The reliability function is given by

R(t) = exp

(
− t

θ

)
and the failure rate function by

h(t) =
1

θ
.

Therefore, after simplification, using (2.1),

(2.8) Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

wherek = 1
α

andh(t) = 1
θ
.

Thus (2.7) holds.
Conversely, suppose thatk = 1

α
, then

1

α(1− α)
log k − 1

α
log h(t) =

1

α(1− α)
log

(∫∞
t

fα(x)dx

Rα(t)

)
, α > 1

which gives,

(2.9) h(t) =

(
1− kα

k(α− 1)
t +

1

h(0)

)−1

= (at + b)−1 ,

wherea =
(

1−kα
k(α−1)

)
= 0, sincek = 1

α
andb = 1

h(0)
.

Clearly (2.9) is the failure rate function of the exponential distribution.
(ii) The density function of the Pareto distribution is given by

f(t) =
(b)

1
a

(at + b)1+ 1
a

, t ≥ 0, a > 0, b > 0.

The reliability function is given by

R(t) =
(b)

1
a

(at + b)
1
a

, t ≥ 0, a > 0, b > 0

and failure rate is given by

(2.10) h(t) = (at + b)−1 .

After simplification, (2.1) yields

(2.11) Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

wherek = 1
aα+α−a

< 1
α
, sinceα > 1 andh(t) = (at + b)−1.

Thus (2.7) holds.
Conversely, suppose thatk < 1

α
. Proceeding as in (i), (2.9) gives

(2.12) h(t) =

(
1− kα

k(α− 1)
t +

1

h(0)

)−1

= (at + b)−1 ,

wherea =
(

1−kα
k(α−1)

)
> 0, sincek < 1

α
, α > 1 andb = 1

h(0)
.
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Clearly, (2.12) is the failure rate function of the Pareto distribution given in (2.10).
(iii) The density function of the finite range distribution is given by

f(t) =
β1

ν

(
1− t

ν

)β1−1

, β1 > 0, 0 ≤ t ≤ ν <∞.

The reliability function is given by

R(t) =

(
1− t

ν

)β1

, β1 > 0, 0 ≤ t ≤ ν <∞

and the failure rate function by

(2.13) h(t) =

(
β1

ν

) (
1− t

ν

)−1

.

It follows that

Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

wherek = β1

αβ1−α+1
> 1

α
, sinceα > 1 andh(t) =

(
β1

ν

) (
1− t

ν

)−1
.

Thus (2.7) holds.
Conversely, supposek > 1

α
. Proceeding as in (i), (2.9) gives

(2.14) h(t) = h(0)

(
1− kα− 1

k(α− 1)
h(0)t

)−1

,

which is the failure rate function of the distribution given by (2.13), ifk > 1
α
. �

2.2. Discrete Case.Let X be a discrete random variable taking valuesx1, x2, ..., xn with re-
spective probabilitiesp1, p2, ..., pn. The discrete residual entropy is defined as

(2.15) H(p; j) = −
n∑

k=j

pk

R(j)
log

(
pk

R(j)

)
.

The generalized residual entropy for the discrete case is defined as

(2.16) Hα(p; j) =
1

α(1− α)
log

n∑
k=j

(
pk

R(j)

)α

.

Forα→ 1, (2.16) reduces to (2.15).

Theorem 2.4. If X has a discrete distributionF (t) with support(tj : tj < tj+1) and an in-
creasing generalized residual entropyHα(X; t) thenHα(X; t) uniquely determinesF (t).

Proof. We have

Hα(p; j) =
1

α(1− α)
log

n∑
k=j

(
pk

R(j)

)α

and so

(2.17)
n∑

k=j

pα
k = Rα(j) exp (α(1− α)Hα(p; j)) .

For j + 1, we have

(2.18)
n∑

k=j+1

pα
k = Rα(j + 1) exp (α(1− α)Hα(p; j + 1)) .
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Subtracting (2.18) from (2.17), usingpj = R(j)−R(j + 1) andλj = R(j+1)
R(j)

, we have

exp (α(1− α)Hα(p; j)) = (1− λj)
α + (λj)

α exp (α(1− α)Hα(p; j + 1)) .

Hence,λj is a number in(0, 1) which is a solution of

(2.19) φ(x) = exp (α(1− α)Hα(p; j))− (1− x)α − (x)α exp (α(1− α)Hα(p; j + 1)) .

Differentiating both sides with respect tox, we have

(2.20) φ′(x) = α(1− x)α−1 − α(x)α−1 exp (α(1− α)Hα(p; j + 1)) .

Note thatφ′(x) = 0 gives

x = [1 + exp (−αHα(p; j + 1))]−1 = xj.

Now for α > 1, φ(0) ≤ 0 andφ(1) ≤ 0, φ(x) first increases and then decreases in(0, 1) with a
maximum atxj = [1 + exp (−αHα(p; j + 1))]−1 .

So the unique solution toφ(x) = 0 is given byx = xj.
ThusHα(X; t) uniquely determinesF (t). �

Theorem 2.5. A discrete uniform distribution with support(1, 2, ..., n) is characterized by the
decreasing generalized discrete residual entropy

Hα(p; j) =
1

α
log(n− j + 1), j = 1, 2, ..., n.

Proof. In the case of a discrete uniform distribution with support(1, 2, ..., n),

Hα(p; j) =
1

α
log(n− j + 1), j = 1, 2, ..., n

which is decreasing inj.
Also,

xj = [1 + exp (−αHα(p; j + 1))]−1 .

Therefore,

φ(xj) = exp (α(1− α)Hα(p; j))− (1− xj)
α − (xj)

α exp (α(1− α)Hα(p; j + 1))

= 0

which proves the theorem. �

3. A NEW CLASS OF L IFE T IME DISTRIBUTION

Ebrahimi [4] defined two nonparametric classes of distribution based on the measureH(X; t)
as follows:

Definition 3.1. A random variableX is said to have decreasing (increasing) uncertainty in
residual life DURL (IURL) ifH(X; t) is decreasing (increasing) int ≥ 0.

Definition 3.2. A non-negative random variableX is said to have decreasing (increasing) uncer-
tainty in a generalized residual entropy of orderα DUGRL(IUGRL) if Hα(X; t) is decreasing
(increasing) int, t > 0.

This implies that the random variableX has DUGRL(IUGRL),

H ′
α(X; t) ≤ 0,

H ′
α(X; t) ≥ 0.

Now we present a relationship between the new classes and the decreasing(increasing) failure
rate class of lifetime distributions.
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Remark 1. R is said to be an IFR(DFR) ifh(t) is increasing(decreasing) int.

Theorem 3.1. If R has an increasing(decreasing) failure rate, IFR(DFR) then it is also a
DUGRL(IUGRL).

Proof. We have,

(3.1) H ′
α(X; t) =

1

1− α
[h(t)− hα(t) exp (−α(1− α)Hα(X; t))] .

SinceR is IFR, by (3.1) and Remark 1, we have

H ′
α(X; t) ≤ 0,

which means thatHα(X; t) is decreasing int, i.e, R is DUGRL. The proof for IUGRL is
similar. �

Theorem 3.2. If a distribution is DUGRL as well as IUGRL for some constant, then it must be
exponential.

Proof. Since the random variableX is both DUGRL and IUGRL, then,

Hα(X; t) = constant.

Differentiating both sides with respect tot, we get

h(t) = constant,

which means that the distribution is exponential. �

The following lemma which gives the value of the functionHα(X; t) under linear transfor-
mation will be used in proving the upcoming theorem.

Lemma 3.3. For any absolutely continuous random variableX, defineZ = ax + b, where
a > 0, b ≥ 0 are constants, then

Hα(Z; t) =
log a

α
+ Hα

(
X;

t− b

a

)
.

Proof. We have,Hα(X; t) from (2.1) andZ = ax + b, therefore,

Hα(Z; t) =
log a

α
+ Hα

(
X;

t− b

a

)
,

which proves the lemma. �

Theorem 3.4.LetX be an absolutely continuous random variable andX ∈ DUGRL(IUGRL).
DefineZ = aX + b, wherea > 0 andb ≥ 0 are constants, thenZ ∈ DUGRL(IUGRL).

Proof. SinceX ∈ DUGRL(IUGRL), then,

H ′
α(X; t) ≤ 0,

H ′
α(X; t) ≥ 0.

By applying Lemma 3.3, it follows thatZ ∈ DUGRL(IUGRL), which proves the theorem.
�

The next theorem gives upper(lower) bounds for the failure rate function.

Theorem 3.5. If X is DUGRL(IUGRL), then

h(t) ≥ (≤)(α)
1

α−1 exp (−αHα(X; t)) .
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Proof. If X is DUGRL, then
H ′

α(X; t) ≤ 0

which gives,

(3.2) h(t) ≥ (α)
1

α−1 exp (−αHα(X; t)) .

Similarly, if X is IUGRL, then

(3.3) h(t) ≤ (α)
1

α−1 exp (−αHα(X; t)) .

�

Corollary 3.6. LetR(t) be a DUGRL(IUGRL), then

R(t) ≤ (≥) exp

(
−

∫ t

0

(α)
1

α−1 exp (−αHα(X; u)du)

)
for all t ≥ 0.
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