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Ebrahim and Pellery7] and Ebrahim 4] proposed the Shannon residual entropy
function as a dynamic measure of uncertainty. In this paper we introduce and
study a generalized information measure for residual lifetime distributions. It is
shown that the proposed measure uniquely determines the distribution function.
Also, characterization results for some lifetime distributions are discussed. Some
discrete distribution results are also addressed.
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1. Introduction

Let X be an absolutely continuous non-negative variable describing the random life-
time of a component. Lef(x) be the probability density functior?'(z) be the
cumulative distribution an(x) be the survival function of the random variabie

A classical measure of uncertainty far is the differential entropy, also known as
the Shannon information measure, defined as

(1.1) H(X) = — /O " F(@) log f(x)da.

If X is a discrete random variable taking valugsz,, ..., x,, with respective proba-
bilities p1, p2, ..., pn, then Shannon’s entropy is defined as

k=1

Renyi [11] generalized {.1) and defined the measure

1 o
1. Hy(X)=———1 @ 1
(1.3) o(X) o —a) og/o fHz)dx, o>
and in the discrete case

1 n

(1.4) H(X)=———log » py, a>1.

a(l —a) ; b
Furthermore, in the continous case

(L5) lim 1,(X) == [ fla)log f(a)de = H(X)

W

P

N
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and in discrete case

(1.6) lim Ho(X) ==Y prlog(ps) = H(P),

a—1

which is Shannon’s entropy in both cases.

The role of differential entropy as a measure of uncertainty in residual lifetime
distributions has attracted increasing attention in recent years. As stated by Ebrahimi
[4], the residual entropy at a tinteof a random life timeX is defined as the differ-
ential entropy of X/X > t). Formally, for all¢ > 0, the residual entropy ok is
given by

a.7) H(X;t) = —/too %log %dm
or
H(X;t) / f(z)log h(z)dz

whereh(t) = % is the hazard function or failure rate of the random variable
Given that an item has survived up tpH (X ;t) measures the uncertainty of the
remaining lifetime of the component.

In the case of a discrete random variable, we have
~ P(ty) . P(ty)
(1.8) H(t;))=— log ,
(1) = = 2 Tz, 8 ey
whereR(t) is the reliability function of the random variabJe.

Nair and Rajesh]] studied the characterization of lifetime distributions by using
the residual entropy function corresponding to the Shannon’s entropy. In this sequel,
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we investigate the problem of the characterization of a lifetime distribution using the
following generalized residual entropy function:

(2.9) H,(X;t) = ﬁlog <LJJ;:—<<;W) , a>1.

Asa — 1, (1.9 reduces to1.7).
The measurel(9) is the residual life entropy corresponding f03).
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2. Characterization of Distributions

2.1. Continuous Case

Let X be a continuous non-negative random variable representing component failure
time with failure distributionF'(¢) = P(X < t) and survival functionR(t) =
1 — F(t) with R(0) = 1. We define the generalized entropy for residual life as

L 1 ftoo fé(x)dx
(2.1) H,(X;t) = a0 —a) log( Ra i) >, a>1
and so
2.2) /t Fo(2)de = R*(#) exp (a(l — a)Ho(X:1)), a> 1.

We now show that/,,(X; t) uniquely determine®(t).

Theorem 2.1.If X has an absolutely continuous distributidf(¢) with reliability
function R(¢) and an increasing residual entrogy,, (X;t), thenH,(X;t) uniquely
determinesR(t).

Proof. Differentiating ¢.2) with respect ta, we have
(2.3) h*(t) = ah(t)exp (a(l — a)H,(X;1))
— (@)(1 = a)exp (a(l — a) Ha(X;1)) H, (X5 1),
whereh(t) = % is the failure rate function.
Hence for a fixed > 0, h(t) is a solution of
(2.4) g(x) = (2)" — azexp (ol — a)Ha(X;1))
+ ol — a)exp (a(l — a)Hy(X;t)) HL(X;t) = 0.
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Differentiating both sides with respecttowe have
(2.5) g'(x) = a(x)*! — aexp (a(l — a)Ho(X; 1))

Now fora > 1, ¢g(0) < 0, g(co) = o0, g(z) first decreases and then increases with
minimum atzr; = exp (—aH,(X;t)) .

So, the unique solution tg(z) = 0 is given byz = h(t). ThusH,(X;t) deter-
minesh(t) uniquely and hence determin&st) uniquely. O

Theorem 2.2. The uniform distribution ovefa, b), a < b can be characterized by
a decreasing generalized residual entrafy(X;¢) = X log(b—1t), b > t.

Proof. For the case of uniform distribution ovér, b), a < b, we have
1
(2.6) H,(X;t) = o log(b —t), b>t
which is decreasing in
Also, z; = exp (—aH,(X;t)), therefore,
g(xy) = (24)* — azpexp (a1l — a)Ho (X 1))
+a(l —a)exp (a1 — a)Ho (X5 1)) Hy(X;1)
=0.

HenceH,(X;t) = Llog(b — t) is the unique solution tg(z;) = 0, which proves
the theorem. O]

Theorem 2.3.Let X be a random variable having a generalized residual entropy of
the form

1
(2.7) H,(X;t) = log k — o log h(t),

a(l — a)
whereh(t) is the failure rate function oK. ThenX has
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(i) an exponential distribution iff = é,

(i) a Pareto distribution iffc < L and

(ii) afinite range distribution iff: > i

Proof. (i) Let X have the exponential distribution,
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which gives,

(2.9) h(t) = (kl(a__kj‘)wr h(lo))_ = (at +b)7",

wherea = <k1(;f°1‘)> =0, sincek = < andb = ﬁ

Clearly .9 is the failure rate function of the exponential distribution.

(i) The density function of the Pareto distribution is given by

b)a
f(t):Ll, t>0,a>0,b>0.
(at +b)" "=

The reliability function is given by

1

R(t):Lgl, t>0,a>0,b>0
(at +0b)
and failure rate is given by
(2.10) h(t) = (at +b)~".

After simplification, ¢.1) yields

1
2.11 H (X:;t)= ——logk — —log h(t),
(2.11) (X5t) = gy losh = losh(t)
_ 1 1 o _ -1
wherek = —— < 2, sincea > 1 andh(t) = (at +b) .

Thus @.7) holds.
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Conversely, suppose that< é Proceeding as in (i) 2(9) gives

(2.12) h(t) = (kl(a__k?)wr h(10))_ = (at+b)",

wherea = (kl(a )> > 0, sincek < —, a > 1landb =

(0)

Clearly, .12 is the failure rate function of the Pareto distribution giverirn.().
(iif) The density function of the finite range distribution is given by

Bu

v

ft) =

The reliability function is given by

14

B
t
R(t):(l——) , /1>0,0<t<v<o
v

and the failure rate function by

(2.13) ht) = (%) (1 _ 5)_1.

It follows that

1
H, (X;t) = log k — o log h(t),

1
a(l — a)
wherek =

Thus @. 7§1holds

Conversely, suppose > é Proceeding as in (i) 2(9) gives

v

(2.14) h(t) = h(0) (1 - %h(o)t)_ ,

t /611
<1——> , }1>0,0<t<v<oo.

> 1 sincea > Landh(t) = (2) (1 - 1)_1.
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which is the failure rate function of the distribution given By, if £ > é [

2.2. Discrete Case

Let X be adiscrete random variable taking valuesr,, ..., x,, with respective prob-
abilitiespy, ps, ..., pn. The discrete residual entropy is defined as

. . Pk Pk
2.15 H(p;j)==)» ——1lo (—) :
(2.15) (p;J) ;; 707 ¢\ 7
The generalized residual entropy for the discrete case is defined as
. 1 a Pk )a
2.16 H,(p;j) = —— o —_ .

Fora — 1, (2.16 reduces toZ.15.

Theorem 2.4.1f X has a discrete distributiorf'(t) with support(t; : t; < t;1)
and an increasing generalized residual entrofdy (X;t) then H,(X;t) uniquely
determined(t).

Proof. We have

and so

(2.17) > i = R(j) exp (a(l — a)Ha(p; j))
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Forj + 1, we have

(2.18) S 5 = G+ Dep(all - a)Halpij +1).

k=j+1
Subtracting £.19 from (2.17), usingp; = R(j) — R(j + 1) and); = Rg(j)l), we
have

exp (a(1 — @) Ha(p; 1)) = (1= X)) + (X)) exp (a(1 — @) Ha(ps j + 1)
Hence,\; is a number in0, 1) which is a solution of
(2.19) ¢(z) = exp (a(l — a)Ha(p; j)) — (1 — 2)*

— (2)%exp (a(l — a)Ha(p;j + 1)) -
Differentiating both sides with respecttowe have
(220)  ¢(2) =a(l —2)* —a(z)* Vexp(a(l - a)Ha(p:j +1)).
Note thatyp'(z) = 0 gives

= [1 +exp(—aHa(p;j+ 1)) =z

Now fora > 1, ¢(0) < 0 and¢(1) < 0, ¢(x) first increases and then decreases in
(0, 1) with a maximum atr; = [1 + exp (—aHa(p; j +1))] "

So the unique solution to(z) = 0 is given byz = z;.

ThusH,(X;t) uniquely determine#’(¢). O

Theorem 2.5. A discrete uniform distribution with suppart, 2, ..., n) is character-
ized by the decreasing generalized discrete residual entropy
Ho(p; j) =

1
—logln—74+1), j=12 ..n
Q
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Proof. In the case of a discrete uniform distribution with supgare, ..., n),

. 1 . .
H.(p;j) = alog(n —j+1), j=12..n

which is decreasing in.

Also,
;= [1+exp (—aHa(p;j + 1)) "
Therefore,
¢(x;) = exp (a(l — a)Ha(p; j)) — (1 — ;)" — (2;)" exp (a(l — @) Ha(p; j + 1))
=0
which proves the theorem. ]
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3. A New Class of Life Time Distribution

Ebrahimi §] defined two nonparametric classes of distribution based on the measure
H(X;t) as follows:

Definition 3.1. A random variableX is said to have decreasing (increasing) uncer-
tainty in residual life DURL (IURL) i (X; ¢) is decreasing (increasing) ih> 0.

Generalized Residual

Definition 3.2. A non-negative random variabl& is said to have decreasing (in- Information Measure
creasing) uncertainty in a generalized residual entropy of ord&@UGRL(IUGRL) M-A.K. Baig and Javid Gani Dar
if H,(X;t)is decreasing (increasing) ity ¢ > 0. vol. 10, iss. 3, art. 84, 2009
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Full Screen
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which means that{,,(X;¢) is decreasing in, i.e, R is DUGRL. The proof for 1U-
GRL is similar. O]

Theorem 3.4.If a distribution is DUGRL as well as IUGRL for some constant, then

it must be exponential.
Proof. Since the random variablg is both DUGRL and IUGRL, then,
H,(X;t) = constant
Differentiating both sides with respecttowe get
h(t) = constant
which means that the distribution is exponential. ]

The following lemma which gives the value of the functip(.X’; ¢) under linear
transformation will be used in proving the upcoming theorem.

Lemma 3.5. For any absolutely continuous random variabfe defineZ = ax + b,
wherea > 0,b > 0 are constants, then

Ho(Z:t) = 8% 4 . (X; ﬂ) .
(8] a

Proof. We have H,(X;t) from (2.1) andZ = ax + b, therefore,

Ho(Z;t) = loga o (X; ﬂ) ,
0] a

which proves the lemma. O
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Theorem 3.6. Let X be an absolutely continuous random variable aid <
DUGRL(IUGRL). DefineZ = aX + b, wherea > 0 andb > 0 are constants,
thenZ € DUGRL(IUGRL).

Proof. SinceX € DUGRL(IUGRL), then,

H,(X;t) <0,
H!(X;t) > 0.

By applying Lemma&3.5, it follows thatZ € DUGRL(IUGRL), which proves the
theorem. ]

The next theorem gives upper(lower) bounds for the failure rate function.
Theorem 3.7.1f X is DUGRL(IUGRL), then
h(t) > (<)(@)+ 7 exp (—aHa(X;1)).
Proof. If X is DUGRL, then

H(X;t) <0
which gives,
(3:2) h(t) > ()77 exp (—aHa(X31)) .
Similarly, if X is IJUGRL, then
(3.3) h(t) < (0)7T exp (—aHa(X;1)).
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Corollary 3.8. Let R(t) be a DUGRL(IUGRL), then

RO < (e (- [ ()7 exp (-atla (X))

forall ¢t > 0.
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