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Abstract: Ebrahim and Pellery [7] and Ebrahim [4] proposed the Shannon residual entropy
function as a dynamic measure of uncertainty. In this paper we introduce and
study a generalized information measure for residual lifetime distributions. It is
shown that the proposed measure uniquely determines the distribution function.
Also, characterization results for some lifetime distributions are discussed. Some
discrete distribution results are also addressed.

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au
mailto:baigmak@yahoo.co.in
mailto:javinfo.stat@yahoo.co.in
mailto:neil.barnett@vu.edu.au


Generalized Residual
Information Measure

M.A.K. Baig and Javid Gani Dar

vol. 10, iss. 3, art. 84, 2009

Title Page

Contents

JJ II

J I

Page 2 of 19

Go Back

Full Screen

Close

Contents

1 Introduction 3

2 Characterization of Distributions 6
2.1 Continuous Case. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Discrete Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A New Class of Life Time Distribution 14

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Generalized Residual
Information Measure

M.A.K. Baig and Javid Gani Dar

vol. 10, iss. 3, art. 84, 2009

Title Page

Contents

JJ II

J I

Page 3 of 19

Go Back

Full Screen

Close

1. Introduction

Let X be an absolutely continuous non-negative variable describing the random life-
time of a component. Letf(x) be the probability density function,F (x) be the
cumulative distribution andR(x) be the survival function of the random variableX.
A classical measure of uncertainty forX is the differential entropy, also known as
the Shannon information measure, defined as

(1.1) H(X) = −
∫ ∞

0

f(x) log f(x)dx.

If X is a discrete random variable taking valuesx1, x2, ..., xn with respective proba-
bilities p1, p2, ..., pn, then Shannon’s entropy is defined as

(1.2) H(P ) = H(p1, p2, ..., pn) = −
n∑

k=1

pk log(pk).

Renyi [11] generalized (1.1) and defined the measure

(1.3) Hα(X) =
1

α(1− α)
log

∫ ∞

0

fα(x)dx, α > 1

and in the discrete case

(1.4) Hα(X) =
1

α(1− α)
log

n∑
k=1

pα
k , α > 1.

Furthermore, in the continous case

(1.5) lim
α→1

Hα(X) = −
∫ ∞

0

f(x) log f(x)dx = H(X)
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and in discrete case

(1.6) lim
α→1

Hα(X) = −
n∑

k=1

pk log(pk) = H(P ),

which is Shannon’s entropy in both cases.
The role of differential entropy as a measure of uncertainty in residual lifetime

distributions has attracted increasing attention in recent years. As stated by Ebrahimi
[4], the residual entropy at a timet of a random life timeX is defined as the differ-
ential entropy of(X/X > t). Formally, for allt > 0, the residual entropy ofX is
given by

(1.7) H(X; t) = −
∫ ∞

t

f(x)

R(t)
log

f(x)

R(t)
dx

or

H(X; t) = 1− 1

R(t)

∫ ∞

t

f(x) log h(x)dx,

whereh(t) = f(t)
R(t)

is the hazard function or failure rate of the random variableX.
Given that an item has survived up tot, H(X; t) measures the uncertainty of the
remaining lifetime of the component.

In the case of a discrete random variable, we have

(1.8) H(tj) = −
n∑

k=j

P (tk)

R(tj)
log

P (tk)

R(tj)
,

whereR(t) is the reliability function of the random variableX.
Nair and Rajesh [9] studied the characterization of lifetime distributions by using

the residual entropy function corresponding to the Shannon’s entropy. In this sequel,
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we investigate the problem of the characterization of a lifetime distribution using the
following generalized residual entropy function:

(1.9) Hα(X; t) =
1

α(1− α)
log

(∫∞
t

fα(x)dx

Rα(t)

)
, α > 1.

As α→ 1, (1.9) reduces to (1.7).
The measure (1.9) is the residual life entropy corresponding to (1.3).
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2. Characterization of Distributions

2.1. Continuous Case

Let X be a continuous non-negative random variable representing component failure
time with failure distributionF (t) = P (X ≤ t) and survival functionR(t) =
1− F (t) with R(0) = 1. We define the generalized entropy for residual life as

(2.1) Hα(X; t) =
1

α(1− α)
log

(∫∞
t

fα(x)dx

Rα(t)

)
, α > 1

and so

(2.2)
∫ ∞

t

fα(x)dx = Rα(t) exp (α(1− α)Hα(X; t)) , α > 1.

We now show thatHα(X; t) uniquely determinesR(t).

Theorem 2.1. If X has an absolutely continuous distributionF (t) with reliability
functionR(t) and an increasing residual entropyHα(X; t), thenHα(X; t) uniquely
determinesR(t).

Proof. Differentiating (2.2) with respect tot, we have

(2.3) hα(t) = αh(t) exp (α(1− α)Hα(X; t))

− (α)(1− α) exp (α(1− α)Hα(X; t)) H ′
α(X; t),

whereh(t) = f(t)
R(t)

is the failure rate function.
Hence for a fixedt > 0, h(t) is a solution of

(2.4) g(x) = (x)α − αx exp (α(1− α)Hα(X; t))

+ α(1− α) exp (α(1− α)Hα(X; t)) H ′
α(X; t) = 0.
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Differentiating both sides with respect tox, we have

(2.5) g′(x) = α(x)α−1 − α exp (α(1− α)Hα(X; t)) .

Now for α > 1, g(0) ≤ 0, g(∞) =∞, g(x) first decreases and then increases with
minimum atxt = exp (−αHα(X; t)) .

So, the unique solution tog(x) = 0 is given byx = h(t). ThusHα(X; t) deter-
minesh(t) uniquely and hence determinesR(t) uniquely.

Theorem 2.2. The uniform distribution over(a, b), a < b can be characterized by
a decreasing generalized residual entropyHα(X; t) = 1

α
log(b− t), b > t.

Proof. For the case of uniform distribution over(a, b), a < b, we have

(2.6) Hα(X; t) =
1

α
log(b− t), b > t

which is decreasing int.
Also, xt = exp (−αHα(X; t)), therefore,

g(xt) = (xt)
α − αxt exp (α(1− α)Hα(X; t))

+ α(1− α) exp (α(1− α)Hα(X; t)) H ′
α(X; t)

= 0.

HenceHα(X; t) = 1
α

log(b − t) is the unique solution tog(xt) = 0, which proves
the theorem.

Theorem 2.3.LetX be a random variable having a generalized residual entropy of
the form

(2.7) Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

whereh(t) is the failure rate function ofX. ThenX has
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(i) an exponential distribution iffk = 1
α
,

(ii) a Pareto distribution iffk < 1
α

and

(iii) a finite range distribution iffk > 1
α
.

Proof. (i) Let X have the exponential distribution,

f(t) =
1

θ
exp

(
−

(
t

θ

))
, t > 0, θ > 0.

The reliability function is given by

R(t) = exp

(
− t

θ

)
and the failure rate function by

h(t) =
1

θ
.

Therefore, after simplification, using (2.1),

(2.8) Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

wherek = 1
α

andh(t) = 1
θ
.

Thus (2.7) holds.
Conversely, suppose thatk = 1

α
, then

1

α(1− α)
log k − 1

α
log h(t) =

1

α(1− α)
log

(∫∞
t

fα(x)dx

Rα(t)

)
, α > 1
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which gives,

(2.9) h(t) =

(
1− kα

k(α− 1)
t +

1

h(0)

)−1

= (at + b)−1 ,

wherea =
(

1−kα
k(α−1)

)
= 0, sincek = 1

α
andb = 1

h(0)
.

Clearly (2.9) is the failure rate function of the exponential distribution.
(ii) The density function of the Pareto distribution is given by

f(t) =
(b)

1
a

(at + b)1+ 1
a

, t ≥ 0, a > 0, b > 0.

The reliability function is given by

R(t) =
(b)

1
a

(at + b)
1
a

, t ≥ 0, a > 0, b > 0

and failure rate is given by

(2.10) h(t) = (at + b)−1 .

After simplification, (2.1) yields

(2.11) Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

wherek = 1
aα+α−a

< 1
α
, sinceα > 1 andh(t) = (at + b)−1.

Thus (2.7) holds.
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Conversely, suppose thatk < 1
α
. Proceeding as in (i), (2.9) gives

(2.12) h(t) =

(
1− kα

k(α− 1)
t +

1

h(0)

)−1

= (at + b)−1 ,

wherea =
(

1−kα
k(α−1)

)
> 0, sincek < 1

α
, α > 1 andb = 1

h(0)
.

Clearly, (2.12) is the failure rate function of the Pareto distribution given in (2.10).
(iii) The density function of the finite range distribution is given by

f(t) =
β1

ν

(
1− t

ν

)β1−1

, β1 > 0, 0 ≤ t ≤ ν <∞.

The reliability function is given by

R(t) =

(
1− t

ν

)β1

, β1 > 0, 0 ≤ t ≤ ν <∞

and the failure rate function by

(2.13) h(t) =

(
β1

ν

) (
1− t

ν

)−1

.

It follows that

Hα(X; t) =
1

α(1− α)
log k − 1

α
log h(t),

wherek = β1

αβ1−α+1
> 1

α
, sinceα > 1 andh(t) =

(
β1

ν

) (
1− t

ν

)−1
.

Thus (2.7) holds.
Conversely, supposek > 1

α
. Proceeding as in (i), (2.9) gives

(2.14) h(t) = h(0)

(
1− kα− 1

k(α− 1)
h(0)t

)−1

,
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which is the failure rate function of the distribution given by (2.13), if k > 1
α
.

2.2. Discrete Case

LetX be a discrete random variable taking valuesx1, x2, ..., xn with respective prob-
abilitiesp1, p2, ..., pn. The discrete residual entropy is defined as

(2.15) H(p; j) = −
n∑

k=j

pk

R(j)
log

(
pk

R(j)

)
.

The generalized residual entropy for the discrete case is defined as

(2.16) Hα(p; j) =
1

α(1− α)
log

n∑
k=j

(
pk

R(j)

)α

.

Forα→ 1, (2.16) reduces to (2.15).

Theorem 2.4. If X has a discrete distributionF (t) with support(tj : tj < tj+1)
and an increasing generalized residual entropyHα(X; t) thenHα(X; t) uniquely
determinesF (t).

Proof. We have

Hα(p; j) =
1

α(1− α)
log

n∑
k=j

(
pk

R(j)

)α

and so

(2.17)
n∑

k=j

pα
k = Rα(j) exp (α(1− α)Hα(p; j)) .
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For j + 1, we have

(2.18)
n∑

k=j+1

pα
k = Rα(j + 1) exp (α(1− α)Hα(p; j + 1)) .

Subtracting (2.18) from (2.17), usingpj = R(j) − R(j + 1) andλj = R(j+1)
R(j)

, we
have

exp (α(1− α)Hα(p; j)) = (1− λj)
α + (λj)

α exp (α(1− α)Hα(p; j + 1)) .

Hence,λj is a number in(0, 1) which is a solution of

(2.19) φ(x) = exp (α(1− α)Hα(p; j))− (1− x)α

− (x)α exp (α(1− α)Hα(p; j + 1)) .

Differentiating both sides with respect tox, we have

(2.20) φ′(x) = α(1− x)α−1 − α(x)α−1 exp (α(1− α)Hα(p; j + 1)) .

Note thatφ′(x) = 0 gives

x = [1 + exp (−αHα(p; j + 1))]−1 = xj.

Now for α > 1, φ(0) ≤ 0 andφ(1) ≤ 0, φ(x) first increases and then decreases in
(0, 1) with a maximum atxj = [1 + exp (−αHα(p; j + 1))]−1 .

So the unique solution toφ(x) = 0 is given byx = xj.
ThusHα(X; t) uniquely determinesF (t).

Theorem 2.5.A discrete uniform distribution with support(1, 2, ..., n) is character-
ized by the decreasing generalized discrete residual entropy

Hα(p; j) =
1

α
log(n− j + 1), j = 1, 2, ..., n.
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Proof. In the case of a discrete uniform distribution with support(1, 2, ..., n),

Hα(p; j) =
1

α
log(n− j + 1), j = 1, 2, ..., n

which is decreasing inj.
Also,

xj = [1 + exp (−αHα(p; j + 1))]−1 .

Therefore,

φ(xj) = exp (α(1− α)Hα(p; j))− (1− xj)
α − (xj)

α exp (α(1− α)Hα(p; j + 1))

= 0

which proves the theorem.
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3. A New Class of Life Time Distribution

Ebrahimi [4] defined two nonparametric classes of distribution based on the measure
H(X; t) as follows:

Definition 3.1. A random variableX is said to have decreasing (increasing) uncer-
tainty in residual life DURL (IURL) ifH(X; t) is decreasing (increasing) int ≥ 0.

Definition 3.2. A non-negative random variableX is said to have decreasing (in-
creasing) uncertainty in a generalized residual entropy of orderα DUGRL(IUGRL)
if Hα(X; t) is decreasing (increasing) int, t > 0.

This implies that the random variableX has DUGRL(IUGRL),

H ′
α(X; t) ≤ 0,

H ′
α(X; t) ≥ 0.

Now we present a relationship between the new classes and the decreasing(increasing)
failure rate class of lifetime distributions.

Remark1. R is said to be an IFR(DFR) ifh(t) is increasing(decreasing) int.

Theorem 3.3. If R has an increasing(decreasing) failure rate, IFR(DFR) then it is
also a DUGRL(IUGRL).

Proof. We have,

(3.1) H ′
α(X; t) =

1

1− α
[h(t)− hα(t) exp (−α(1− α)Hα(X; t))] .

SinceR is IFR, by (3.1) and Remark1, we have

H ′
α(X; t) ≤ 0,
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which means thatHα(X; t) is decreasing int, i.e, R is DUGRL. The proof for IU-
GRL is similar.

Theorem 3.4. If a distribution is DUGRL as well as IUGRL for some constant, then
it must be exponential.

Proof. Since the random variableX is both DUGRL and IUGRL, then,

Hα(X; t) = constant.

Differentiating both sides with respect tot, we get

h(t) = constant,

which means that the distribution is exponential.

The following lemma which gives the value of the functionHα(X; t) under linear
transformation will be used in proving the upcoming theorem.

Lemma 3.5. For any absolutely continuous random variableX, defineZ = ax + b,
wherea > 0, b ≥ 0 are constants, then

Hα(Z; t) =
log a

α
+ Hα

(
X;

t− b

a

)
.

Proof. We have,Hα(X; t) from (2.1) andZ = ax + b, therefore,

Hα(Z; t) =
log a

α
+ Hα

(
X;

t− b

a

)
,

which proves the lemma.
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Theorem 3.6. Let X be an absolutely continuous random variable andX ∈
DUGRL(IUGRL). DefineZ = aX + b, wherea > 0 and b ≥ 0 are constants,
thenZ ∈ DUGRL(IUGRL).

Proof. SinceX ∈ DUGRL(IUGRL), then,

H ′
α(X; t) ≤ 0,

H ′
α(X; t) ≥ 0.

By applying Lemma3.5, it follows thatZ ∈ DUGRL(IUGRL), which proves the
theorem.

The next theorem gives upper(lower) bounds for the failure rate function.

Theorem 3.7. If X is DUGRL(IUGRL), then

h(t) ≥ (≤)(α)
1

α−1 exp (−αHα(X; t)) .

Proof. If X is DUGRL, then
H ′

α(X; t) ≤ 0

which gives,

(3.2) h(t) ≥ (α)
1

α−1 exp (−αHα(X; t)) .

Similarly, if X is IUGRL, then

(3.3) h(t) ≤ (α)
1

α−1 exp (−αHα(X; t)) .
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Corollary 3.8. LetR(t) be a DUGRL(IUGRL), then

R(t) ≤ (≥) exp

(
−

∫ t

0

(α)
1

α−1 exp (−αHα(X; u)du)

)
for all t ≥ 0.
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