Journal of Inequalities in Pure and

 Applied Mathematicshttp://jipam.vu.edu.au/
Volume 6, Issue 4, Article 117, 2005

SOME RESULTS ON A GENERALIZED USEFUL INFORMATION MEASURE

${ }^{1}$ ABUL BASAR KHAN, ${ }^{1}$ BILAL AHMAD BHAT, AND ${ }^{2}$ S. PIRZADA
${ }^{1}$ Division of Agricultural Economics and Statistics, Sher-e-Kashmir
University of Agricultural Sciences and Technology Jammu
Faculty of Agriculture
Main Campus Chatha-180009 India
bhat_bilal@rediffmail.com
${ }^{2}$ Department of Mathematics
University of Kashmir
SRINAGAR-190006, IndiA
sdpirzada@yahoo.co.in

Received 01 June, 2005; accepted 23 September, 2005
Communicated by N.S. Barnett

Abstract. A parametric mean length is defined as the quantity

$$
\begin{gathered}
{ }_{\alpha \beta} L_{u}=\frac{\alpha}{\alpha-1}\left[1-\sum P_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} D^{-n_{i}\left(\frac{\alpha-1}{\alpha}\right)}\right], \\
\text { where } \alpha \neq 1, \sum p_{i}=1
\end{gathered}
$$

this being the useful mean length of code words weighted by utilities, u_{i}. Lower and upper bounds for ${ }_{\alpha \beta} L_{u}$ are derived in terms of useful information for the incomplete power distribution, p^{β}.

Key words and phrases: Entropy, Useful Information, Utilities, Power probabilities.

2000 Mathematics Subject Classification. 94A24, 94A15, 94A17, 26D15.

1. Introduction

Consider the following model for a random experiment S,

$$
S_{N}=[E ; P ; U]
$$

where $E=\left(E_{1}, E_{2}, \ldots, E_{n}\right)$ is a finite system of events happening with respective probabilities $P=\left(p_{1}, p_{2}, \ldots, p_{N}\right), p_{i} \geq 0$, and $\sum p_{i}=1$ and credited with utilities $U=\left(u_{1}, u_{2}, \ldots, u_{N}\right)$,

[^0]$u_{i}>0, i=1,2, \ldots, N$. Denote the model by E, where
\[

E=\left[$$
\begin{array}{cccc}
E_{1} & E_{2} & \cdots & E_{N} \tag{1.1}\\
p_{1} & p_{2} & \cdots & p_{N} \\
u_{1} & u_{2} & \cdots & u_{N}
\end{array}
$$\right]
\]

We call (1.1) a Utility Information Scheme (UIS). Belis and Guiasu [3] proposed a measure of information called 'useful information' for this scheme, given by

$$
\begin{equation*}
H(U ; P)=-\sum u_{i} p_{i} \log p_{i} \tag{1.2}
\end{equation*}
$$

where $H(U ; P)$ reduces to Shannon's [8] entropy when the utility aspect of the scheme is ignored i.e., when $u_{i}=1$ for each i. Throughout the paper, \sum will stand for $\sum_{i=1}^{N}$ unless otherwise stated and logarithms are taken to base $D(D>1)$.

Guiasu and Picard [5] considered the problem of encoding the outcomes in (1.1) by means of a prefix code with codewords $w_{1}, w_{2}, \ldots, w_{N}$ having lengths $n_{1}, n_{2}, \ldots, n_{N}$ and satisfying Kraft's inequality [4]

$$
\begin{equation*}
\sum_{i=1}^{N} D^{-n_{i}} \leq 1 \tag{1.3}
\end{equation*}
$$

where D is the size of the code alphabet. The useful mean length L_{u} of code was defined as

$$
\begin{equation*}
L_{u}=\frac{\sum u_{i} n_{i} p_{i}}{\sum u_{i} p_{i}} \tag{1.4}
\end{equation*}
$$

and the authors obtained bounds for it in terms of $H(U ; P)$.
Longo [8], Gurdial and Pessoa [6], Khan and Autar [7], Autar and Khan [2] have studied generalized coding theorems by considering different generalized measures of (1.2) and (1.4) under condition (1.3) of unique decipherability.

In this paper, we study some coding theorems by considering a new function depending on the parameters α and β and a utility function. Our motivation for studying this new function is that it generalizes some entropy functions already existing in the literature (see C. Arndt [1]). The function under study is closely related to Tsallis entropy which is used in physics.

2. Coding Theorems

Consider a function

$$
\begin{equation*}
{ }_{\alpha \beta} H(U ; P)=\frac{\alpha}{\alpha-1}\left[1-\left(\frac{\sum u_{i} p_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}}\right], \tag{2.1}
\end{equation*}
$$

where $\alpha>0(\neq 1), \beta>0, p_{i} \geq 0, i=1,2, \ldots, N$ and $\sum p_{i} \leq 1$.
(i) When $\beta=1$ and $\alpha \rightarrow 1$, (2.1) reduces to a measure of useful information for the incomplete distribution due to Belis and Guiasu [3].
(ii) When $u_{i}=1$ for each i i.e., when the utility aspect is ignored, $\sum p_{i}=1, \beta=1$ and $\alpha \rightarrow 1$, the measure (2.1) reduces to Shannon's entropy [10].
(iii) When $u_{i}=1$ for each i, the measure (2.1) becomes entropy for the β-power distribution derived from P studied by Roy [9]. We call ${ }_{\alpha \beta} H(U ; P)$ in (2.1) the generalized useful measure of information for the incomplete power distribution P^{β}.

Further consider,

$$
\begin{equation*}
{ }_{\alpha \beta} L_{u}=\frac{\alpha}{\alpha-1}\left[1-\sum P_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} D^{-n_{i}\left(\frac{\alpha-1}{\alpha}\right)}\right], \tag{2.2}
\end{equation*}
$$

where $\alpha>0(\neq 1), \sum p_{i} \leq 1$.
(i) For $\beta=1, u_{i}=1$ for each i and $\alpha \rightarrow 1,{ }_{\alpha \beta} L_{u}$ in (2.2) reduces to the useful mean length L_{u} of the code given in (1.4).
(ii) For $\beta=1, u_{i}=1$ for each i and $\alpha \rightarrow 1,{ }_{\alpha \beta} L_{u}$ becomes the optimal code length defined by Shannon [10].
We establish a result, that in a sense, provides a characterization of ${ }_{\alpha \beta} H(U ; P)$ under the condition of unique decipherability.

Theorem 2.1. For all integers $D>1$

$$
\begin{equation*}
{ }_{\alpha \beta} L_{u} \geq{ }_{\alpha \beta} H(U ; P) \tag{2.3}
\end{equation*}
$$

under the condition (1.3). Equality holds if and only if

$$
\begin{equation*}
n_{i}=-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right) . \tag{2.4}
\end{equation*}
$$

Proof. We use Hölder's [11] inequality

$$
\begin{equation*}
\sum x_{i} y_{i} \geq\left(\sum x_{i}^{p}\right)^{\frac{1}{p}}\left(\sum y_{i}^{q}\right)^{\frac{1}{q}} \tag{2.5}
\end{equation*}
$$

for all $x_{i} \geq 0, y_{i} \geq 0, i=1,2, \ldots, N$ when $P<1(\neq 1)$ and $p^{-1}+q^{-1}=1$, with equality if and only if there exists a positive number c such that

$$
\begin{equation*}
x_{i}^{p}=c y_{i}^{q} . \tag{2.6}
\end{equation*}
$$

Setting

$$
\begin{gathered}
x_{i}=p_{i}^{\frac{\alpha \beta}{\alpha-1}}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha-1}} D^{-n_{i}}, \\
y_{i}=p_{i}^{\frac{\alpha \beta}{1-\alpha}}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{1-\alpha}},
\end{gathered}
$$

$p=1-1 / \alpha$ and $q=1-\alpha$ in (2.5) and using (1.3) we obtain the result (2.3) after simplification for $\frac{\alpha}{\alpha-1}>0$ as $\alpha>1$.
Theorem 2.2. For every code with lengths $\left\{n_{i}\right\}, i=1,2, \ldots, N,{ }_{\alpha \beta} L_{u}$ can be made to satisfy,

$$
\begin{equation*}
{ }_{\alpha \beta} L_{u} \geq{ }_{\alpha \beta} H(U ; P) D^{\left(\frac{1-\alpha}{\alpha}\right)}+\frac{\alpha}{1-\alpha}\left[1-D^{\left(\frac{1-\alpha}{\alpha}\right)}\right] . \tag{2.7}
\end{equation*}
$$

Proof. Let n_{i} be the positive integer satisfying, the inequality

$$
\begin{equation*}
-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right) \leq n_{i}<-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right)+1 . \tag{2.8}
\end{equation*}
$$

Consider the intervals

$$
\begin{equation*}
\delta_{i}=\left[-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right),-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right)+1\right] \tag{2.9}
\end{equation*}
$$

of length 1 . In every δ_{i}, there lies exactly one positive number n_{i} such that

$$
\begin{equation*}
0<-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right) \leq n_{i}<-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right)+1 \tag{2.10}
\end{equation*}
$$

It can be shown that the sequence $\left\{n_{i}\right\}, i=1,2, \ldots, N$ thus defined, satisfies 1.3). From (2.10) we have

$$
\begin{align*}
n_{i} & <-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right)+1 \tag{2.11}\\
& \Rightarrow D^{-n_{i}}<\left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right) D \\
& \Rightarrow D^{-n_{i}\left(\frac{\alpha-1}{\alpha}\right)}<\left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right)^{\frac{1-\alpha}{\alpha}} D^{\frac{\alpha-1}{\alpha}}
\end{align*}
$$

Multiplying both sides of 2.11 by $p_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} i_{i}^{\alpha^{\alpha \beta}}}\right)^{\frac{1}{\alpha}}$, summing over $i=1,2, \ldots, N$ and simplifying, gives (2.7).

Theorem 2.3. For every code with lengths $\left\{n_{i}\right\}, i=1,2, \ldots, N$, of Theorem 2.1] ${ }_{\alpha \beta} L_{u}$ can be made to satisfy

$$
\begin{equation*}
{ }_{\alpha \beta} H(U ; P) \leq{ }_{\alpha \beta} L_{u}<{ }_{\alpha \beta} H(U ; P)+\frac{\alpha}{\alpha-1}(1-D) \tag{2.12}
\end{equation*}
$$

Proof. Suppose

$$
\begin{equation*}
\overline{n_{i}}=-\log \left(\frac{u_{i} P_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\alpha \beta}}\right) \tag{2.13}
\end{equation*}
$$

Clearly $\overline{n_{i}}$ and $\overline{n_{i}}+1$ satisfy 'equality' in Hölder's inequality (2.5). Moreover, $\overline{n_{i}}$ satisfies Kraft's inequality (1.3).

Suppose n_{i} is the unique integer between $\overline{n_{i}}$ and $\overline{n_{i}}+1$, then obviously, n_{i} satisfies (1.3).
Since $\alpha>0(\neq 1)$, we have

$$
\begin{align*}
\sum p_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} & D^{\bar{n}_{i}(\alpha-1) / \alpha} \tag{2.14}\\
& \leq \sum p_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} D^{n_{i}(\alpha-1) / \alpha} \\
& <D\left(\sum p_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} D^{\bar{n}_{i}(\alpha-1) / \alpha}\right)
\end{align*}
$$

Since,

$$
\sum p_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} D^{\bar{n}_{i}(\alpha-1) / \alpha}=\left(\frac{\sum u_{i} p_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}}
$$

Hence, (2.14) becomes

$$
\left(\frac{\sum u_{i} p_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} \leq \sum p_{i}^{\beta}\left(\frac{u_{i}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}} D^{-\bar{n}_{i}(\alpha-1) / \alpha}<D\left(\frac{\sum u_{i} p_{i}^{\alpha \beta}}{\sum u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha}}
$$

which gives the result (2.12).

References

[1] C. ARNDT, Information Measures- Information and its Description in Science and Engineering, Springer, (2001) Berlin.
[2] R. AUTAR and A.B. KHAN, On generalized useful information for incomplete distribution, J. of Comb. Information and Syst. Sci., 14(4) (1989), 187-191.
[3] M. BELIS and S. GUIASU, A qualitative-quantitative measure of information in Cybernetics Systems, IEEE Trans. Information Theory, IT-14 (1968), 593-594.
[4] A. FEINSTEIN, Foundation of Information Theory, McGraw Hill, New York, (1958).
[5] S. GUIASU and C.F. PICARD, Borne infericutre de la Longuerur utile de certain codes, C.R. Acad. Sci, Paris, 273A (1971), 248-251.
[6] GURDIAL and F. PESSOA, On useful information of order α, J. Comb. Information and Syst. Sci., 2 (1977), 158-162.
[7] A.B. KHAN AND R. AUTAR, On useful information of order α and β, Soochow J. Math., $\mathbf{5}$ (1979), 93-99.
[8] G. LONGO, A noiseless coding theorem for sources having utilities, SIAM J. Appl. Math., 30(4) (1976), 739-748.
[9] L.K. ROY, Comparison of Renyi entropies of power distribution, ZAMM, $\mathbf{5 6}$ (1976), 217-218.
[10] C.E. SHANNON, A Mathematical Theory of Communication, Bell System Tech-J., 27 (1948), 394-423, 623-656.
[11] O. SHISHA, Inequalities, Academic Press, New York, (1967).

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 The authors wish to thank the anonymous referee for his valuable suggestions, which improved the presentation of the paper. 176-05

