# AN APPLICATION OF SUBORDINATION ON HARMONIC FUNCTION 

H.A. AL-KHARSANI<br>Department of Mathematics<br>Girls College<br>P.O. Box 838, Dammam, Saudi Arabia<br>hakh73@hotmail.com

Received 28 June, 2006; accepted 15 May, 2007
Communicated by A. Sofo


#### Abstract

The purpose of this paper is to obtain sufficient bound estimates for harmonic functions belonging to the classes $S_{H}^{*}[A, B], K_{H}[A, B]$ defined by subordination, and we give some convolution conditions. Finally, we examine the closure properties of the operator $D^{n}$ on these classes under the generalized Bernardi integral operator.


Key words and phrases: Harmonic, Univalent, Subordination, Convex, Starlike, Close-to-convex.

2000 Mathematics Subject Classification Primary 30C45; Secondary 58E20.

## 1. Introduction

A continuous function $f=u+i v$ is a complex-valued harmonic function in a complex domain $C$ if both $u$ and $v$ are real harmonic in $C$. In any simply connected domain $D \subset C$, we can write $f=h+\bar{g}$, where $h$ and $g$ are analytic in $D$. We call $h$ the analytic part and $g$ the co-analytic part of $f$. A necessary and sufficient condition for $f$ to be locally univalent and orientation-preserving in $D$ is that $\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|$ in $D$ [2].

We denote by $S_{H}$ the family of functions $f=h+\bar{g}$ which are harmonic univalent and orientation-preserving in the open disk $U=\{z:|z|<1\}$ so that $f=h+\bar{g}$ is normalized by $f(0)=h(0)=f_{z}(0)-1=0$. Therefore, for $f=h+\bar{g} \in S_{H}$, we can express the analytic functions $h$ and $g$ by the following power series expansion:

$$
\begin{equation*}
h(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}, \quad g(z)=\sum_{m=1}^{\infty} b_{m} z^{m} . \tag{1.1}
\end{equation*}
$$

Note that the family $S_{H}$ of orientation-preserving, normalized harmonic univalent functions reduces to the class $S$ of normalized analytic univalent functions if the co-analytic part of $f=$ $h+\bar{g}$ is identically zero.

Let $K, S^{*}, C, K_{H}, S_{H}^{*}$ and $C_{H}$ denote the respective subclasses of $S$ and $S_{H}$ where the images of $f(u)$ are convex, starlike and close-to-convex.

A function $f(z)$ is subordinate to $F(z)$ in the disk $U$ if there exists an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=F(w(z))$ for $|z|<1$. This is written as $f(z) \prec F(z)$.

Let $K[A, B], S^{*}[A, B]$ denote the subclasses of $S$ defined as follows:

$$
\begin{aligned}
& S^{*}[A, B]=\left\{f \in S, \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1\right\} \\
& K[A, B]=\left\{f \in S, \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1\right\} .
\end{aligned}
$$

We now introduce the following subclasses of harmonic functions in terms of subordination.
Let $f=h+\bar{g} \in S_{H}$ such that

$$
\begin{align*}
& \varphi(z)=\frac{h(z)-g(z)}{1-b_{1}},  \tag{1.2}\\
& \psi(z)=\frac{h(z)-e^{i \theta} g(z)}{1-e^{i \theta} b_{1}}, \quad 0 \leq \theta<2 \pi, \tag{1.3}
\end{align*}
$$

and let $-1 \leq B<A \leq 1$, then we can construct the classes $K_{H}[A, B], S_{H}^{*}[A, B]$ using subordination as follows:

$$
\begin{aligned}
K_{H}[A, B] & =\left\{f \in S_{H}, \frac{\left(z \psi^{\prime}(z)\right)^{\prime}}{\psi^{\prime}(z)} \prec \frac{1+A z}{1+B z}\right\}, \\
S_{H}^{*}[A, B] & =\left\{f \in S_{H}, \frac{z \varphi^{\prime}(z)}{\varphi(z)} \prec \frac{1+A z}{1+B z}\right\} .
\end{aligned}
$$

Let $D^{n}$ denote the $n$-th Ruscheweh derivative of a power series $t(z)=z+\sum_{m=2}^{\infty} t_{m} z^{m}$ which is given by

$$
\begin{aligned}
D^{n} t & =\frac{z}{(1-z)^{n+1}} * t(z) \\
& =z+\sum_{m=2}^{\infty} C(n, m) t_{m} z^{m}
\end{aligned}
$$

where

$$
C(n, m)=\frac{(n+1)_{m-1}}{(m-1)!}=\frac{(n+1)(n+2) \cdots(n+m-1)}{(m-1)!} .
$$

In [5], the operator $D^{n}$ was defined on the class of harmonic functions $S_{H}$ as follows:

$$
D^{n} f=D^{n} h+\overline{D^{n} g}
$$

The purpose of this paper is to obtain sufficient bound estimates for harmonic functions belonging to the classes $S_{H}^{*}[A, B], K_{H}[A, B]$, and we give some convolution conditions. Finally, we examine the closure properties of the operator $D^{n}$ on the above classes under the generalized Bernardi integral operator.

## 2. Preliminary Results

Cluni and Sheil-Small [2] proved the following results:
Lemma 2.1. If $h, g$ are analytic in $U$ with $\left|h^{\prime}(0)\right|>\left|g^{\prime}(0)\right|$ and $h+\epsilon g$ is close-to-convex for each $\epsilon,|\epsilon|=1$, then $f=h+\bar{g}$ is harmonic close-to-convex.

Lemma 2.2. If $f=h+\bar{g}$ is locally univalent in $U$ and $h+\epsilon g$ is convex for some $\epsilon,|\epsilon| \leq 1$, then $f$ is univalent close-to-convex.

A domain $D$ is called convex in the direction $\gamma(0 \leq \gamma<\pi)$ if every line parallel to the line through 0 and $e^{i \gamma}$ has a connected intersection with $D$. Such a domain is close-to-convex. The convex domains are those that are convex in every direction.

We will make use of the following result which may be found in [2]:
Lemma 2.3. A function $f=h+\bar{g}$ is harmonic convex if and only if the analytic functions $h(z)-e^{i \gamma} g(z), \quad 0 \leq \gamma<2 \pi$, are convex in the direction $\frac{\gamma}{2}$ and $f$ is suitably normalized.

Necessary and sufficient conditions were found in [2, 1] and [4] for functions to be in $K_{H}, S_{H}^{*}$ and $C_{H}$. We now give some sufficient conditions for functions in the classes $S_{H}^{*}[A, B]$ and $K_{H}[A, B]$, but first we need the following results:

Lemma 2.4 ([7]). If $q(z)=z+\sum_{m=2}^{\infty} C_{m} z^{m}$ is analytic in $U$, then $q$ maps onto a starlike domain if $\sum_{m=2}^{\infty} m\left|C_{m}\right| \leq 1$ and onto convex domains if $\sum_{m=2}^{\infty} m^{2}\left|C_{m}\right| \leq 1$.

Lemma 2.5 ([4]). If $f=h+\bar{g}$ with

$$
\sum_{m=2}^{\infty} m\left|a_{m}\right|+\sum_{m=1}^{\infty} m\left|b_{m}\right| \leq 1
$$

then $f \in C_{H}$. The result is sharp.
Lemma 2.6 ([4]). If $f=h+\bar{g}$ with

$$
\sum_{m=2}^{\infty} m^{2}\left|a_{m}\right|+\sum_{m=1}^{\infty} m^{2}\left|b_{m}\right| \leq 1
$$

then $f \in K_{H}$. The result is sharp.
Lemma 2.7 ([6]). A function $f(z) \in S$ is in $S^{*}[A, B]$ if

$$
\sum_{m=2}^{\infty}\{m(1+A)-(1+B)\}\left|a_{m}\right| \leq A-B
$$

where $-1 \leq B<A \leq 1$.
Lemma 2.8 ([6]). A function $f(z) \in S$ is in $K[A, B]$ if

$$
\sum_{m=2}^{\infty} m\{m(1+A)-(1+B)\}\left|a_{m}\right| \leq A-B
$$

where $-1 \leq B<A \leq 1$.
Lemma 2.9 ([3]). Let $h$ be convex univalent in $U$ with $h(0)=1$ and $\operatorname{Re}(\lambda h(z)+\mu)>0(\lambda, \mu \in$ $\mathbb{C})$. If $p$ is analytic in $U$ with $p(0)=1$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\lambda p(z)+\mu} \prec h(z) \quad(z \in U)
$$

implies

$$
p(z) \prec h(z) \quad(z \in U) .
$$

## 3. Main Results

Theorem 3.1. If

$$
\begin{equation*}
\sum_{m=2}^{\infty}\{m(1+A)-(1+B)\}\left|a_{m}\right|+\sum_{m=1}^{\infty}\{m(1+A)-(1+B)\}\left|b_{m}\right| \leq A-B \tag{3.1}
\end{equation*}
$$

then $f \in S_{H}^{*}[A, B]$. The result is sharp.
Proof. From the definition of $S_{H}^{*}[A, B]$, we need only to prove that $\varphi(z) \in S^{*}[A, B]$, where $\phi(z)$ is given by (1.2) such that

$$
\phi(z)=z+\sum_{m=2}^{\infty}\left(\frac{a_{m}-b_{m}}{1-b_{1}}\right) z^{m}
$$

Using Lemma 2.7, we have

$$
\begin{aligned}
\sum_{m=2}^{\infty} \frac{\{m(1+A)-(1+B)\}}{A-B}\left|\frac{a_{m}-b_{m}}{1-b_{1}}\right| & \leq \sum_{m=2}^{\infty} \frac{\{m(1+A)-(1+B)\}}{A-B}\left(\frac{\left|a_{m}\right|+\left|b_{m}\right|}{1-\left|b_{1}\right|}\right) \\
& \leq 1
\end{aligned}
$$

if and only if (3.1) holds and hence we have the result.
The harmonic function

$$
\begin{aligned}
& f(z)=z+\sum_{m=2}^{\infty} \frac{1}{(A-B)\{m(1+A)-(1+B)\}} x_{m} z^{m} \\
& \quad+\sum_{m=1}^{\infty} \frac{1}{(A-B)\{m(1+A)-(1+B)\}} \bar{y}_{m} \bar{z}^{m} \\
& \quad\left(\text { where } \sum_{m=2}^{\infty}\left|x_{m}\right|+\sum_{m=1}^{\infty}\left|y_{m}\right|=A-B-1\right)
\end{aligned}
$$

shows that the coefficient bound given by (3.1) is sharp.
Corollary 3.2. If $A=1, B=-1$, then we have the coefficient bound given in [1] with a different approach.

Theorem 3.3. If $f=h+\bar{g}$ with

$$
\begin{aligned}
\sum_{m=2}^{\infty}\{m(1+A)-(1+B)\}\left|a_{m}\right| & C(n, m) \\
& +\sum_{m=1}^{\infty}\{m(1+A)-(1+B)\}\left|b_{m}\right| C(n, m) \leq A-B
\end{aligned}
$$

then $D^{n} f=H+\bar{G} \in S_{H}^{*}[A, B]$. The function

$$
f(z)=z+\frac{(1+\delta)(A-B)}{\{m(1+A)-(1+B)\} C(n, m)} \bar{z}^{m}, \quad \delta>0
$$

shows that the result is sharp.
Corollary 3.4. If $A=1, B=-1$, then we have the coefficient bound given in Theorem 3.1, $\alpha=0$ [5] with a different approach.

## Theorem 3.5. If

$$
\begin{equation*}
\sum_{m=2}^{\infty} m\{m(1+A)-(1+B)\}\left|a_{m}\right|+\sum_{m=1}^{\infty} m\{m(1+A)-(1+B)\}\left|b_{m}\right| \leq A-B \tag{3.2}
\end{equation*}
$$

then $f \in K_{H}[A, B]$. The result is sharp.
Proof. From the definition of the class $K_{H}[A, B]$ and the coefficient bound of $K[A, B]$ given in Lemma 2.8, we have the result. The function

$$
f(z)=z+\frac{(1+\delta)(A-B)}{m\{m(1+A)-(1+B)\}} \bar{z}^{m}, \quad \delta>0
$$

shows that the upper bound in (3.2) cannot be improved.
Theorem 3.6. If $f=h+\bar{g}$ with

$$
\begin{aligned}
\sum_{m=2}^{\infty} m\{m(1+A)-(1+B)\} & C(n, m)\left|a_{m}\right| \\
& +\sum_{m=1}^{\infty} m\{m(1+A)-(1+B)\} C(n, m)\left|b_{m}\right| \leq A-B
\end{aligned}
$$

then $D^{n} f \in K_{H}[A, B]$. The function

$$
f=z+\frac{(1+\delta)(A-B)}{m\{m(1+A)-(1+B)\} C(n, m)} \bar{z}^{m}, \quad \delta>0
$$

shows that the result is sharp.
Corollary 3.7. If $n=0, A=1, B=-1$, we have Theorem 3 in [4] and if $A=1, B=-1$, we have Theorem 2 in [5].

In the next two theorems, we give necessary and sufficient convolution conditions for functions in $S_{H}^{*}[A, B]$ and $K_{H}[A, B]$.

Theorem 3.8. Let $f=h+\bar{g} \in S_{H}$. Then $f \in S_{H}^{*}[A, B]$ if

$$
h(z) *\left(\frac{z+\frac{(\xi-A)}{A-B} z^{2}}{(1-z)^{2}}\right)+\epsilon B \overline{g(z)}\left(\frac{\xi \bar{z}-\frac{(-1-A \xi)}{A-B} \bar{z}^{2}}{(1-\bar{z})^{2}}\right) \neq 0, \quad|\xi|=1,0<|z|<1 .
$$

Proof. Let $S(z)=\frac{h(z)-g(z)}{1-b_{1}}$, then $S \in S^{*}[A, B]$ if and only if

$$
\frac{z S^{\prime}}{S} \prec \frac{1+A z}{1+B z}
$$

or

$$
\frac{z S^{\prime}(z)}{S(z)} \neq \frac{1+A e^{i \theta}}{1+B e^{i \theta}}, \quad 0 \leq \theta<2 \pi, z \in U .
$$

It follows that

$$
\left[z S^{\prime}(z)-S(z) \frac{1+A e^{i \theta}}{1+B e^{i \theta}}\right] \neq 0
$$

Since $z S^{\prime}(z)=S(z) * \frac{z}{(1-z)^{2}}$, the above inequality is equivalent to

$$
\begin{align*}
0 \neq S(z) * & {\left[\frac{z}{(1-z)^{2}}-\frac{1+A e^{i \theta}}{1+B e^{i \theta}} \frac{z}{1-z}\right] }  \tag{3.3}\\
= & \frac{1}{\lambda e^{i t}}\left\{S(z) *\left[\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{(A-B)} z^{2}}{\left(-e^{-i \theta}-B\right)(1-z)^{2}}\right]\right\}, \quad 1-b_{1}=\lambda e^{i t} \\
= & \frac{1}{\lambda e^{i t}}\left\{h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{-i \theta}-B\right)(1-z)^{2}}\right)-g(z)\right. \\
& \left.*\left(\left\{\frac{z+\left(-e^{-i \theta}-A\right) z^{2}}{(A-B)\left(e^{-i \theta} / B\right)}\right\} /(1-z)^{2}\left(-B-e^{i \theta}\right)\right)\right\} \\
= & \frac{1}{\lambda}\left\{h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2} e^{i t}}\right)\right. \\
& \left.-g(z) *\left(\frac{B e^{i \theta} z+\frac{B\left(-e^{-i \theta}-A\right) e^{i \theta}}{A-B} z^{2}}{e^{i t}\left(-B-e^{i \theta}\right)(1-z)^{2}}\right)\right\} .
\end{align*}
$$

Now, if $z_{1}-z_{2} \neq 0$ and $\left|z_{1}\right| \neq\left|z_{2}\right|$, then $z_{1}-\epsilon \bar{z}_{2} \neq 0, \quad|\epsilon|=1$, i.e.,

$$
\begin{aligned}
& =\frac{1}{\lambda\left(-B-e^{-i \theta}\right)}\left[h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2} e^{i t}}\right)\right] \\
& \quad-\epsilon \overline{g(z)} *\left(\frac{B e^{+i \theta} z+\frac{\left(-1-A e^{i \theta}\right) B}{A-B} z^{2}}{e^{i t}\left(-B-e^{i \theta}\right)(1-z)^{2}}\right) \\
& =\frac{1}{\lambda\left(-B-e^{-i \theta}\right)}\left[h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2} e^{i t}}\right)\right] \\
& \quad-\epsilon \overline{g(z)} *\left(\frac{(-B)\left(-e^{-i \theta} \bar{z}+\frac{B\left(-1-e^{-i \theta}\right)}{A-B} \bar{z}^{2}\right.}{(1-\bar{z})^{2} e^{-i t}}\right) .
\end{aligned}
$$

Since $\arg \left(1-b_{1}\right)=t \neq \pi$, we obtain the result and the proof is thus completed.
Corollary 3.9. If $A=1, B-1$ and $\epsilon=1$, then we have Theorem 2.6 in [1] with a different approach.
Theorem 3.10. Let $f=h+\bar{g} \in S_{H}$. Then $f \in K_{H}[A, B]$ if and only if

$$
\begin{gathered}
h(z) *\left[\frac{z+\frac{2 \xi-A-B}{A-B} z^{2}}{(1-z)^{3}}\right]+\epsilon \overline{(z)} *\left[\frac{\xi \bar{z}-\frac{-2+(A+B) \xi}{A-B} \bar{z}^{2}}{(1-\bar{z})^{3}}\right] \neq 0 \\
|\epsilon|=1,|\xi|=1, \quad 0<|z|<1
\end{gathered}
$$

Proof. Let $\psi(z)=\frac{h(z)-e^{i \gamma} g(z)}{1-e^{i \gamma} b_{1}}, \quad 0 \leq \gamma<2 \pi$ and $1-e^{i \gamma} b_{1}=\lambda e^{i t}$, then from 1.3) and 3.3, $z \psi^{\prime}(z) \in S_{H}^{*}[A, B]$ if and only if

$$
z \psi^{\prime}(z) *\left[\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{-i \theta}-B\right)(1-z)^{2}}\right] \neq 0
$$

i.e.,

$$
\begin{aligned}
0 & \neq \frac{1}{\lambda e^{i t}}\left[z h^{\prime} *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{i \theta}-B\right)(1-z)^{2}}\right\}-\epsilon z g^{\prime} *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{-i \theta}-B\right)(1-z)^{2}}\right\}\right] \\
& =\frac{1}{\lambda e^{i t}}\left[h(z) *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2}\left(-e^{-i \theta}-B\right)}\right\}^{\prime}-\epsilon g(z) *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2}\left(-e^{-i \theta}-B\right)}\right\}^{\prime}\right] \\
& =\frac{1}{\lambda e^{i t}}\left[h(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{(1-z)^{3}\left(-e^{-i \theta}-B\right)}\right)-\epsilon g(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{(1-z)^{3}\left(-e^{-i \theta}-B\right)}\right)\right] \\
& =\frac{1}{\lambda}\left[h(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{e^{i t}(1-z)^{3}\left(-e^{-i \theta}-B\right)}\right)-\epsilon g(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{e^{i t}(1-z)^{3}\left(-B-e^{-i \theta}\right) \frac{e^{-i \theta}}{B}}\right)\right] \\
& =\frac{1}{\lambda}\left[h(z) * \frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{e^{i t}(1-z)^{3}\left(-e^{-i \theta}-B\right)}-\epsilon \overline{g(z)} *\left(\frac{B e^{i \theta} z+\frac{-2 B-(A+B) B e^{i \theta}}{A-B}}{e^{2}}\right)\right] \\
& =\frac{1}{\lambda}\left[h(z) * \frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B}}{e^{i t}(1-z)^{3}\left(-e^{-i \theta}-B\right)}-\epsilon \overline{g(z)} *\left(\frac{(-B)\left(-e^{-i \theta}\right) \bar{z}+\frac{-2 B-(A+B) B e^{-i \theta}}{A-B} \bar{z}^{2}}{A}\right)\right] \\
& =\frac{1}{\lambda}\left[h(z) * \frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B}}{e^{i t}(1-z)^{3}\left(e^{-i \theta}-B\right)}+\epsilon B \overline{g(z)} *\left(\frac{\left(-e^{-i \theta}\right) \bar{z}-\frac{-2+(A+B)\left(-e^{-i \theta}\right)}{A-B} \bar{z}^{2}}{e^{-i t}\left(-B-e^{-i \theta}\right)(1-\bar{z})^{3}}\right)\right]
\end{aligned}
$$

and we have the result.
Corollary 3.11. If $A=1, B=-1, \epsilon=-1$, then we have Theorem 2.7 of [1].
Theorem 3.12. If $f=h+\bar{g} \in S_{H}$ with

$$
\begin{equation*}
\sum_{m=2}^{\infty} m C(n, m)\left|a_{m}\right|+\sum_{m=1}^{\infty} m C(n, m)\left|b_{m}\right| \leq 1 \tag{3.4}
\end{equation*}
$$

then $D^{n} f=H+\bar{G} \in C_{H}$. The result is sharp.
Proof. The result follows immediately. Using Lemma 2.5, the function

$$
f(z)=z+\frac{1+\delta}{m C(n, m)} \bar{z}^{m}, \quad \delta>0
$$

shows that the upper bound in (3.4) cannot be improved.
Theorem 3.13. If $f=h+\bar{g}$ is locally univalent with $\sum_{m=2}^{\infty} m^{2} C(n, m)\left|a_{m}\right| \leq 1$, then $D^{n} f \in$ $C_{H}$.
Proof. Take $\epsilon=0$ in Lemma 2.2 and apply Lemma 2.4.
Corollary 3.14. $D^{n} f=H+\bar{G} \in C_{H}$ if $\left|G^{\prime}(z)\right| \leq \frac{1}{2}$ and $\sum_{m=2}^{\infty} m^{2} C(n, m)\left|a_{m}\right| \leq 1$.
Proof. The function $D^{n} f$ is locally univalent if $\left|H^{\prime}(z)\right|>\left|G^{\prime}(z)\right|$ for $z \in U$. Since

$$
2 \sum_{m=2}^{\infty} m C(n, m)\left|a_{m}\right| \leq \sum_{m=2}^{\infty} m^{2} C(n, m)\left|a_{m}\right| \leq 1
$$

we have

$$
\left|H^{\prime}(z)\right|>1-\sum_{m=2}^{\infty} m\left|a_{m}\right| C(n, m) \left\lvert\, \geq \frac{1}{2}\right.
$$

Corollary 3.15. If $h(z) \in K$ and $w(z)$ is analytic with $|w(z)|<1$, then

$$
f(z)=D^{n} h(z)+\int_{0}^{z} w(t)\left(D^{n} h(t)\right)^{\prime} d t \in C_{H}
$$

Theorem 3.16. Let $f=h+\bar{g} \in S_{H}$. If $D^{n+1} f \in R$, then $D^{n} f \in R$, where $R$ can be $S_{H}^{*}[A, B]$ or $K_{H}[A, B]$ or $C_{H}$.
Proof. We can prove the result when $R \equiv S_{H}^{*}[A, B]$. If $D^{n+1} f \in S_{H}^{*}[A, B]$, then $D^{n+1}\left[\frac{h-g}{1-b_{1}}\right] \in$ $S^{*}[A, B]$ and $\left|D^{n+1} h\right|>\left|D^{n+1} g\right|$. Using Lemma 2.9, we have

$$
D^{n}\left[\frac{h-g}{1-b_{1}}\right] \in S^{*}[A, B] .
$$

Since

$$
\left|D^{n+1} h\right|=\left|z\left(\frac{z}{(1-z)^{n+1}} * h\right)^{\prime}\right|=\left|z\left\{\frac{1}{z} \frac{z}{(1-z)^{n+1}} * h^{\prime}\right\}\right|,
$$

this implies $\left|D^{n} h\right|>\left|D^{n} g\right|$, or $D^{n}(h)+\overline{D^{n} g} \in S_{H}^{*}[A, B]$ and we have the result.
Theorem 3.17. Let $f=h+\bar{g} \in S_{H}$ and let $F_{c}(f)=\frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t$. If $D^{n} f \in R$, then $D^{n} F_{c}(f) \in R$, where $R$ can be $S_{H}^{*}[A, B]$ or $K_{H}[A, B]$ or $C_{H}$.
Proof. If $D^{n} f \in S_{H}^{*}[A, B]$, then $D^{n}\left(\frac{h-g}{1-b_{1}}\right) \in S^{*}[A, B]$. Using Lemma 2.9, we have $D^{n} F_{c}(f) \in$ $S^{*}[A, B]$. That is, $D^{n} F_{c}\left(\frac{(h-g)}{1-b_{1}}\right) \in S^{*}[A, B]$ or $D^{n} F_{c}(h)-D^{n} F_{c}(g) \in S^{*}[A, B]$. Since $\left|D^{n} F_{c}(n)\right|>\left|D^{n} F_{c}(g)\right|$, then $D^{n} F_{c}(f) \in S_{H}^{*}[A, B]$.

## REFERENCES

[1] O.P. AHUJA, J.M. JAHANGIRI and H. SILVERMAN, Convolutions for special classes of harmonic univalent functions, Appl. Math. Lett., 16 (2003), 905-909.
[2] J. CLUNI and T. SHEIL-SMALL, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 9 (1984), 3-25.
[3] P. ENIGENBERG, S.S. MILLER, P.T. MOCANU AND M.O. READE, On a Briot-Bouquet differential subordination, General Inequalities, Birkhäuser, Basel, 3 (1983), 339-348.
[4] J. JAHANGIRI AND H. SILVERMAN, Harmonic close-to-convex mappings, J. of Applied Mathematics and Stochastic Analysis, 15(1) (2002), 23-28.
[5] G. MURUGUSUNDARAMOORTHY, A class of Ruscheweyh-type harmonic univalent functions with varying arguments, South West J. of Pure and Applied Mathematics, 2 (2003), 90-95.
[6] H. SILVERMAN and E.M. SILVIA, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37 (1985), 48-61.
[7] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.

