AN APPLICATION OF SUBORDINATION ON HARMONIC FUNCTION

H.A. AL-KHARSANI

Department of Mathematics
Girls College
P.O. Box 838, Dammam, Saudi Arabia

EMail: hakh73@hotmail.com
Subordination on Harmonic Function

28 June, 2006
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:
Abstract:

15 May, 2007
A. Sofo

Primary 30C45; Secondary 58E20.
Harmonic, Univalent, Subordination, Convex, Starlike, Close-to-convex.
The purpose of this paper is to obtain sufficient bound estimates for harmonic functions belonging to the classes $S_{H}^{*}[A, B], K_{H}[A, B]$ defined by subordination, and we give some convolution conditions. Finally, we examine the closure properties of the operator D^{n} on these classes under the generalized Bernardi integral operator.
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page

Contents

Page 1 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 Preliminary Results 6
3 Main Results 8

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 2 of 17
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

A continuous function $f=u+i v$ is a complex-valued harmonic function in a complex domain C if both u and v are real harmonic in C. In any simply connected domain $D \subset C$, we can write $f=h+\bar{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and orientation-preserving in D is that $\left|g^{\prime}(z)\right|<\left|h^{\prime}(z)\right|$ in D [2].

We denote by S_{H} the family of functions $f=h+\bar{g}$ which are harmonic univalent and orientation-preserving in the open disk $U=\{z:|z|<1\}$ so that $f=h+\bar{g}$ is normalized by $f(0)=h(0)=f_{z}(0)-1=0$. Therefore, for $f=h+\bar{g} \in S_{H}$, we can express the analytic functions h and g by the following power series expansion:

$$
\begin{equation*}
h(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m}, \quad g(z)=\sum_{m=1}^{\infty} b_{m} z^{m} . \tag{1.1}
\end{equation*}
$$

Note that the family S_{H} of orientation-preserving, normalized harmonic univalent functions reduces to the class S of normalized analytic univalent functions if the coanalytic part of $f=h+\bar{g}$ is identically zero.

Let $K, S^{*}, C, K_{H}, S_{H}^{*}$ and C_{H} denote the respective subclasses of S and S_{H} where the images of $f(u)$ are convex, starlike and close-to-convex.

A function $f(z)$ is subordinate to $F(z)$ in the disk U if there exists an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=F(w(z))$ for $|z|<1$. This is written as $f(z) \prec F(z)$.

Let $K[A, B], S^{*}[A, B]$ denote the subclasses of S defined as follows:

$$
S^{*}[A, B]=\left\{f \in S, \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1\right\}
$$

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 3 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
K[A, B]=\left\{f \in S, \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \prec \frac{1+A z}{1+B z}, \quad-1 \leq B<A \leq 1\right\} .
$$

We now introduce the following subclasses of harmonic functions in terms of subordination.

Let $f=h+\bar{g} \in S_{H}$ such that

$$
\begin{align*}
& \varphi(z)=\frac{h(z)-g(z)}{1-b_{1}} \tag{1.2}\\
& \psi(z)=\frac{h(z)-e^{i \theta} g(z)}{1-e^{i \theta} b_{1}}, \quad 0 \leq \theta<2 \pi \tag{1.3}
\end{align*}
$$

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

$$
\begin{aligned}
K_{H}[A, B] & =\left\{f \in S_{H}, \frac{\left(z \psi^{\prime}(z)\right)^{\prime}}{\psi^{\prime}(z)} \prec \frac{1+A z}{1+B z}\right\}, \\
S_{H}^{*}[A, B] & =\left\{f \in S_{H}, \frac{z \varphi^{\prime}(z)}{\varphi(z)} \prec \frac{1+A z}{1+B z}\right\} .
\end{aligned}
$$

Let D^{n} denote the n-th Ruscheweh derivative of a power series $t(z)=z+\sum_{m=2}^{\infty} t_{m} z^{m}$ which is given by

$$
\begin{aligned}
D^{n} t & =\frac{z}{(1-z)^{n+1}} * t(z) \\
& =z+\sum_{m=2}^{\infty} C(n, m) t_{m} z^{m}
\end{aligned}
$$

where

$$
C(n, m)=\frac{(n+1)_{m-1}}{(m-1)!}=\frac{(n+1)(n+2) \cdots(n+m-1)}{(m-1)!} .
$$

Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

In [5], the operator D^{n} was defined on the class of harmonic functions S_{H} as follows:

$$
D^{n} f=D^{n} h+\overline{D^{n} g}
$$

The purpose of this paper is to obtain sufficient bound estimates for harmonic functions belonging to the classes $S_{H}^{*}[A, B], K_{H}[A, B]$, and we give some convolution conditions. Finally, we examine the closure properties of the operator D^{n} on the above classes under the generalized Bernardi integral operator.

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 5 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Preliminary Results

Cluni and Sheil-Small [2] proved the following results:
Lemma 2.1. If h, g are analytic in U with $\left|h^{\prime}(0)\right|>\left|g^{\prime}(0)\right|$ and $h+\epsilon g$ is close-toconvex for each $\epsilon,|\epsilon|=1$, then $f=h+\bar{g}$ is harmonic close-to-convex.
Lemma 2.2. If $f=h+\bar{g}$ is locally univalent in U and $h+\epsilon g$ is convex for some $\epsilon,|\epsilon| \leq 1$, then f is univalent close-to-convex.

A domain D is called convex in the direction $\gamma(0 \leq \gamma<\pi)$ if every line parallel to the line through 0 and $e^{i \gamma}$ has a connected intersection with D. Such a domain is close-to-convex. The convex domains are those that are convex in every direction.

We will make use of the following result which may be found in [2]:
Lemma 2.3. A function $f=h+\bar{g}$ is harmonic convex if and only if the analytic functions $h(z)-e^{i \gamma} g(z), \quad 0 \leq \gamma<2 \pi$, are convex in the direction $\frac{\gamma}{2}$ and f is suitably normalized.

Necessary and sufficient conditions were found in [2, 1] and [4] for functions to be in K_{H}, S_{H}^{*} and C_{H}. We now give some sufficient conditions for functions in the classes $S_{H}^{*}[A, B]$ and $K_{H}[A, B]$, but first we need the following results:
Lemma 2.4 ([7]). If $q(z)=z+\sum_{m=2}^{\infty} C_{m} z^{m}$ is analytic in U, then q maps onto a starlike domain if $\sum_{m=2}^{\infty} m\left|C_{m}\right| \leq 1$ and onto convex domains if $\sum_{m=2}^{\infty} m^{2}\left|C_{m}\right| \leq$ 1.

Lemma 2.5 ([4]). If $f=h+\bar{g}$ with

$$
\sum_{m=2}^{\infty} m\left|a_{m}\right|+\sum_{m=1}^{\infty} m\left|b_{m}\right| \leq 1
$$

then $f \in C_{H}$. The result is sharp.

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 6 of 17
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.6 ([4]). If $f=h+\bar{g}$ with

$$
\sum_{m=2}^{\infty} m^{2}\left|a_{m}\right|+\sum_{m=1}^{\infty} m^{2}\left|b_{m}\right| \leq 1,
$$

then $f \in K_{H}$. The result is sharp.
Lemma 2.7 ([6]). A function $f(z) \in S$ is in $S^{*}[A, B]$ if

$$
\sum_{m=2}^{\infty}\{m(1+A)-(1+B)\}\left|a_{m}\right| \leq A-B
$$

where $-1 \leq B<A \leq 1$.
Lemma 2.8 ([6]). A function $f(z) \in S$ is in $K[A, B]$ if

$$
\sum_{m=2}^{\infty} m\{m(1+A)-(1+B)\}\left|a_{m}\right| \leq A-B
$$

where $-1 \leq B<A \leq 1$.
Lemma 2.9 ([3]). Let h be convex univalent in U with $h(0)=1$ and $\operatorname{Re}(\lambda h(z)+$ $\mu)>0 \quad(\lambda, \mu \in \mathbb{C})$. If p is analytic in U with $p(0)=1$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\lambda p(z)+\mu} \prec h(z) \quad(z \in U)
$$

implies

$$
p(z) \prec h(z) \quad(z \in U) .
$$

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 7 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Main Results

Theorem 3.1. If
(3.1) $\sum_{m=2}^{\infty}\{m(1+A)-(1+B)\}\left|a_{m}\right|+\sum_{m=1}^{\infty}\{m(1+A)-(1+B)\}\left|b_{m}\right| \leq A-B$,
then $f \in S_{H}^{*}[A, B]$. The result is sharp.
Proof. From the definition of $S_{H}^{*}[A, B]$, we need only to prove that $\varphi(z) \in S^{*}[A, B]$,
Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents
Using Lemma 2.7, we have

$$
\begin{aligned}
\sum_{m=2}^{\infty} \frac{\{m(1+A)-(1+B)\}}{A-B}\left|\frac{a_{m}-b_{m}}{1-b_{1}}\right| & \leq \sum_{m=2}^{\infty} \frac{\{m(1+A)-(1+B)\}}{A-B}\left(\frac{\left|a_{m}\right|+\left|b_{m}\right|}{1-\left|b_{1}\right|}\right) \\
& \leq 1
\end{aligned}
$$

if and only if (3.1) holds and hence we have the result.
The harmonic function

$$
f(z)=z+\sum_{m=2}^{\infty} \frac{1}{(A-B)\{m(1+A)-(1+B)\}} x_{m} z^{m}
$$

$$
\phi(z)=z+\sum_{m=2}^{\infty}\left(\frac{a_{m}-b_{m}}{1-b_{1}}\right) z^{m} .
$$

Page 8 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
&+\sum_{m=1}^{\infty} \frac{1}{(A-B)\{m(1+A)-(1+B)\}} \bar{y}_{m} \bar{z}^{m} \\
& \quad\left(\text { where } \sum_{m=2}^{\infty}\left|x_{m}\right|+\sum_{m=1}^{\infty}\left|y_{m}\right|=A-B-1\right)
\end{aligned}
$$

Subordination on Harmonic Function

H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

$$
+\sum_{m=1}^{\infty}\{m(1+A)-(1+B)\}\left|b_{m}\right| C(n, m) \leq A-B
$$

then $D^{n} f=H+\bar{G} \in S_{H}^{*}[A, B]$. The function

$$
f(z)=z+\frac{(1+\delta)(A-B)}{\{m(1+A)-(1+B)\} C(n, m)} \bar{z}^{m}, \quad \delta>0
$$

Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 3.5. If

(3.2) $\sum_{m=2}^{\infty} m\{m(1+A)-(1+B)\}\left|a_{m}\right|+\sum_{m=1}^{\infty} m\{m(1+A)-(1+B)\}\left|b_{m}\right| \leq A-B$,
then $f \in K_{H}[A, B]$. The result is sharp.
Proof. From the definition of the class $K_{H}[A, B]$ and the coefficient bound of $K[A, B]$ given in Lemma 2.8, we have the result. The function

$$
f(z)=z+\frac{(1+\delta)(A-B)}{m\{m(1+A)-(1+B)\}} \bar{z}^{m}, \quad \delta>0
$$

shows that the upper bound in (3.2) cannot be improved.
Theorem 3.6. If $f=h+\bar{g}$ with

$$
\begin{aligned}
\sum_{m=2}^{\infty} m\{m(1+A) & -(1+B)\} C(n, m)\left|a_{m}\right| \\
& +\sum_{m=1}^{\infty} m\{m(1+A)-(1+B)\} C(n, m)\left|b_{m}\right| \leq A-B
\end{aligned}
$$

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 10 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In the next two theorems, we give necessary and sufficient convolution conditions for functions in $S_{H}^{*}[A, B]$ and $K_{H}[A, B]$.
Theorem 3.8. Let $f=h+\bar{g} \in S_{H}$. Then $f \in S_{H}^{*}[A, B]$ if
$h(z) *\left(\frac{z+\frac{(\xi-A)}{A-B} z^{2}}{(1-z)^{2}}\right)+\epsilon B \overline{g(z)}\left(\frac{\xi \bar{z}-\frac{(-1-A \xi)}{A-B} \bar{z}^{2}}{(1-\bar{z})^{2}}\right) \neq 0, \quad|\xi|=1,0<|z|<1$.
Proof. Let $S(z)=\frac{h(z)-g(z)}{1-b_{1}}$, then $S \in S^{*}[A, B]$ if and only if

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 11 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
= & \frac{1}{\lambda e^{i t}}\left\{h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{-i \theta}-B\right)(1-z)^{2}}\right)-g(z)\right. \\
& \left.*\left(\left\{\frac{z+\left(-e^{-i \theta}-A\right) z^{2}}{(A-B)\left(e^{-i \theta} / B\right)}\right\} /(1-z)^{2}\left(-B-e^{i \theta}\right)\right)\right\} \\
= & \frac{1}{\lambda}\left\{h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2} e^{i t}}\right)\right. \\
& \left.-g(z) *\left(\frac{B e^{i \theta} z+\frac{B\left(-e^{-i \theta}-A\right) e^{i \theta}}{A-B} z^{2}}{e^{i t}\left(-B-e^{i \theta}\right)(1-z)^{2}}\right)\right\} .
\end{aligned}
$$

Subordination on Harmonic Function

H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page

Contents

$$
\begin{aligned}
& =\frac{1}{\lambda\left(-B-e^{-i \theta}\right)}\left[h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2} e^{i t}}\right)\right] \\
& \quad-\epsilon \overline{g(z)} *\left(\frac{B e^{+i \theta} z+\frac{\left(-1-A e^{i \theta}\right) B}{A-B} z^{2}}{e^{i t}\left(-B-e^{i \theta}\right)(1-z)^{2}}\right) \\
& =\frac{1}{\lambda\left(-B-e^{-i \theta}\right)}\left[h(z) *\left(\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2} e^{i t}}\right)\right] \\
& \quad-\epsilon \overline{g(z)} *\left(\frac{(-B)\left(-e^{-i \theta} \bar{z}+\frac{B\left(-1-A e^{-i \theta}\right)}{A-B} \bar{z}^{2}\right.}{(1-\bar{z})^{2} e^{-i t}}\right) .
\end{aligned}
$$

Since $\arg \left(1-b_{1}\right)=t \neq \pi$, we obtain the result and the proof is thus completed.
Corollary 3.9. If $A=1, B-1$ and $\epsilon=1$, then we have Theorem 2.6 in [1] with a
Now, if $z_{1}-z_{2} \neq 0$ and $\left|z_{1}\right| \neq\left|z_{2}\right|$, then $z_{1}-\epsilon \bar{z}_{2} \neq 0, \quad|\epsilon|=1$, i.e.,

Page 12 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
different approach.
Theorem 3.10. Let $f=h+\bar{g} \in S_{H}$. Then $f \in K_{H}[A, B]$ if and only if

$$
\begin{gathered}
h(z) *\left[\frac{z+\frac{2 \xi-A-B}{A-B} z^{2}}{(1-z)^{3}}\right]+\epsilon \overline{g(z)} *\left[\frac{\xi \bar{z}-\frac{-2+(A+B) \xi}{A-B} \bar{z}^{2}}{(1-\bar{z})^{3}}\right] \neq 0 \\
|\epsilon|=1, \quad|\xi|=1, \quad 0<|z|<1
\end{gathered}
$$

Subordination on Harmonic Function

H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
i.e.,

$$
\begin{aligned}
0 & \neq \frac{1}{\lambda e^{i t}}\left[z h^{\prime} *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{i \theta}-B\right)(1-z)^{2}}\right\}-\epsilon z g^{\prime} *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{-i \theta}-B\right)(1-z)^{2}}\right\}\right] . \\
& =\frac{1}{\lambda e^{i t}}\left[h(z) *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2}\left(-e^{-i \theta}-B\right)}\right\}^{\prime}-\epsilon g(z) *\left\{\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{(1-z)^{2}\left(-e^{-i \theta}-B\right)}\right\}^{\prime}\right] \\
& =\frac{1}{\lambda e^{i t}}\left[h(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{(1-z)^{3}\left(-e^{-i \theta}-B\right)}\right)-\epsilon g(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{(1-z)^{3}\left(-e^{-i \theta}-B\right)}\right)\right] \\
& =\frac{1}{\lambda}\left[h(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{e^{i t}(1-z)^{3}\left(-e^{-i \theta}-B\right)}\right)-\epsilon g(z) *\left(\frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{e^{i t}(1-z)^{3}\left(-B-e^{-i \theta}\right) \frac{e^{-i \theta}}{B}}\right)\right]
\end{aligned}
$$

Proof. Let $\psi(z)=\frac{h(z)-e^{i \gamma} g(z)}{1-e^{i \gamma} b_{1}}, \quad 0 \leq \gamma<2 \pi$ and $1-e^{i \gamma} b_{1}=\lambda e^{i t}$, then from (1.3) and (3.3), $z \psi^{\prime}(z) \in S_{H}^{*}[A, B]$ if and only if

$$
z \psi^{\prime}(z) *\left[\frac{z+\frac{\left(-e^{-i \theta}-A\right)}{A-B} z^{2}}{\left(-e^{-i \theta}-B\right)(1-z)^{2}}\right] \neq 0
$$

Contents
\square
Page 13 of 17

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& =\frac{1}{\lambda}\left[h(z) * \frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B} z^{2}}{e^{i t}(1-z)^{3}\left(-e^{-i \theta}-B\right)}-\epsilon \overline{g(z)} *\left(\frac{B e^{i \theta} z+\frac{-2 B-(A+B) B e^{i \theta}}{A-B} z^{2}}{e^{i t}(1-z)^{3}\left(-B-e^{i \theta}\right)}\right)\right] \\
& =\frac{1}{\lambda}\left[h(z) * \frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B}}{e^{i t}(1-z)^{3}\left(-e^{-i \theta}-B\right)}-\epsilon \overline{g(z)} *\left(\frac{(-B)\left(-e^{-i \theta}\right) \bar{z}+\frac{-2 B-(A+B) B e^{-i \theta}}{A-B} \bar{z}^{2}}{e^{-i t}\left(-B-e^{-i \theta}\right)(1-\bar{z})^{3}}\right)\right] \\
& =\frac{1}{\lambda}\left[h(z) * \frac{z+\frac{-2 e^{-i \theta}-A-B}{A-B}}{e^{i t}(1-z)^{3}\left(e^{-i \theta}-B\right)}+\epsilon B \overline{g(z)} *\left(\frac{\left(-e^{-i \theta}\right) \bar{z}-\frac{-2+(A+B)\left(-e^{-i \theta}\right)}{A-B} \bar{z}^{2}}{e^{-i t}\left(-B-e^{-i \theta}\right)(1-\bar{z})^{3}}\right)\right],
\end{aligned}
$$

Subordination on Harmonic Function
H.A. Al-Kharsani
and we have the result.
Corollary 3.11. If $A=1, B=-1, \epsilon=-1$, then we have Theorem 2.7 of [1].
Theorem 3.12. If $f=h+\bar{g} \in S_{H}$ with

$$
\begin{equation*}
\sum_{m=2}^{\infty} m C(n, m)\left|a_{m}\right|+\sum_{m=1}^{\infty} m C(n, m)\left|b_{m}\right| \leq 1, \tag{3.4}
\end{equation*}
$$

then $D^{n} f=H+\bar{G} \in C_{H}$. The result is sharp.
Proof. The result follows immediately. Using Lemma 2.5, the function

$$
f(z)=z+\frac{1+\delta}{m C(n, m)} \bar{z}^{m}, \quad \delta>0
$$

shows that the upper bound in (3.4) cannot be improved.
Theorem 3.13. If $f=h+\bar{g}$ is locally univalent with $\sum_{m=2}^{\infty} m^{2} C(n, m)\left|a_{m}\right| \leq 1$, then $D^{n} f \in C_{H}$.

Proof. Take $\epsilon=0$ in Lemma 2.2 and apply Lemma 2.4.
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 14 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

Corollary 3.14. $D^{n} f=H+\bar{G} \in C_{H}$ if $\left|G^{\prime}(z)\right| \leq \frac{1}{2}$ and

$$
\sum_{m=2}^{\infty} m^{2} C(n, m)\left|a_{m}\right| \leq 1
$$

Proof. The function $D^{n} f$ is locally univalent if $\left|H^{\prime}(z)\right|>\left|G^{\prime}(z)\right|$ for $z \in U$. Since

$$
2 \sum_{m=2}^{\infty} m C(n, m)\left|a_{m}\right| \leq \sum_{m=2}^{\infty} m^{2} C(n, m)\left|a_{m}\right| \leq 1,
$$

Subordination on Harmonic Function

H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Corollary 3.15. If $h(z) \in K$ and $w(z)$ is analytic with $|w(z)|<1$, then

$$
f(z)=D^{n} h(z)+\int_{0}^{z} w(t)\left(D^{n} h(t)\right)^{\prime} d t \in C_{H} .
$$

Theorem 3.16. Let $f=h+\bar{g} \in S_{H}$. If $D^{n+1} f \in R$, then $D^{n} f \in R$, where R can be $S_{H}^{*}[A, B]$ or $K_{H}[A, B]$ or C_{H}.

Proof. We can prove the result when $R \equiv S_{H}^{*}[A, B]$. If $D^{n+1} f \in S_{H}^{*}[A, B]$, then $D^{n+1}\left[\frac{h-g}{1-b_{1}}\right] \in S^{*}[A, B]$ and $\left|D^{n+1} h\right|>\left|D^{n+1} g\right|$. Using Lemma 2.9, we have

$$
D^{n}\left[\frac{h-g}{1-b_{1}}\right] \in S^{*}[A, B]
$$

we have

$$
\left|H^{\prime}(z)\right|>1-\sum_{m=2}^{\infty} m\left|a_{m}\right| C(n, m) \left\lvert\, \geq \frac{1}{2}\right.
$$

Page 15 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since

$$
\left|D^{n+1} h\right|=\left|z\left(\frac{z}{(1-z)^{n+1}} * h\right)^{\prime}\right|=\left|z\left\{\frac{1}{z} \frac{z}{(1-z)^{n+1}} * h^{\prime}\right\}\right|
$$

this implies $\left|D^{n} h\right|>\left|D^{n} g\right|$, or $D^{n}(h)+\overline{D^{n} g} \in S_{H}^{*}[A, B]$ and we have the result.
Theorem 3.17. Let $f=h+\bar{g} \in S_{H}$ and let $F_{c}(f)=\frac{1+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t$. If $D^{n} f \in R$, then $D^{n} F_{c}(f) \in R$, where R can be $S_{H}^{*}[A, B]$ or $K_{H}[A, B]$ or C_{H}.
Proof. If $D^{n} f \in S_{H}^{*}[A, B]$, then $D^{n}\left(\frac{h-g}{1-b_{1}}\right) \in S^{*}[A, B]$. Using Lemma 2.9, we have $D^{n} F_{c}(f) \in S^{*}[A, B]$. That is, $D^{n} F_{c}\left(\frac{(h-g)}{1-b_{1}}\right) \in S^{*}[A, B]$ or $D^{n} F_{c}(h)-$ $D^{n} F_{c}(g) \in S^{*}[A, B]$. Since $\left|D^{n} F_{c}(n)\right|>\left|D^{n} F_{c}(g)\right|$, then $D^{n} F_{c}(f) \in S_{H}^{*}[A, B]$.

Subordination on Harmonic Function
H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 16 of 17
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] O.P. AHUJA, J.M. JAHANGIRI AND H. SILVERMAN, Convolutions for special classes of harmonic univalent functions, Appl. Math. Lett., 16 (2003), 905909.
[2] J. CLUNI and T. SHEIL-SMALL, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 9 (1984), 3-25.
[3] P. ENIGENBERG, S.S. MILLER, P.T. MOCANU and M.O. READE, On a Briot-Bouquet differential subordination, General Inequalities, Birkhäuser, Basel, 3 (1983), 339-348.
[4] J. JAHANGIRI AND H. SILVERMAN, Harmonic close-to-convex mappings, J. of Applied Mathematics and Stochastic Analysis, 15(1) (2002), 23-28.
[5] G. MURUGUSUNDARAMOORTHY, A class of Ruscheweyh-type harmonic univalent functions with varying arguments, South West J. of Pure and Applied Mathematics, 2 (2003), 90-95.
[6] H. SILVERMAN and E.M. SILVIA, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37 (1985), 48-61.
[7] H. SILVERMAN, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.

Subordination on Harmonic Function

H.A. Al-Kharsani
vol. 8, iss. 4, art. 109, 2007

Title Page
Contents

Page 17 of 17
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

