SOME INEQUALITIES FOR THE q-DIGAMMA FUNCTION

TOUFIK MANSOUR

Department of Mathematics
University of Haifa
31905 Haifa, Israel

EMail: toufik@math.haifa.ac.il

ARMEND SH. SHABANI
Department of Mathematics
University of Prishtina
Avenue "Mother Theresa"
5 Prishtine 10000, Republic of Kosova
EMail: armend_shabani@hotmail.com

17 June, 2008
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words: $\quad q$-digamma function, inequalities.
Abstract.

21 February, 2009
A. Laforgia

33D05

For the q-digamma function and it's derivatives are established the functional inequalities of the types:

$$
\begin{aligned}
& f^{2}(x \cdot y) \lessgtr f(x) \cdot f(y), \\
& f(x+y) \lessgtr f(x)+f(y)
\end{aligned}
$$

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 1 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction 3
2 Inequalities of the type $f^{2}(x \cdot y) \lessgtr f(x) \cdot f(y) \quad 6$
3 Inequalities of the Type $f(x+y) \lessgtr f(x)+f(y) \quad \mathbf{1 1}$11

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 16	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

The digamma (or psi) function is defined for positive real numbers x as the logarithmic derivative of Euler's gamma function, $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$. The following integral and series representations are valid (see [1]):

$$
\begin{equation*}
\psi(x)=-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} d t=-\gamma-\frac{1}{x}+\sum_{n \geq 1} \frac{x}{n(n+x)} \tag{1.1}
\end{equation*}
$$

where $\gamma=0.57721 \ldots$ denotes Euler's constant. Another interesting series representation for ψ, which is "more rapidly convergent" than the one given in (1.1), was discovered by Ramanujan [3, page 374].

Jackson (see $[5,6,7,8]$) defined the q-analogue of the gamma function as

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, \quad 0<q<1 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{\left(q^{-1} ; q^{-1}\right)_{\infty}}{\left(q^{-x} ; q^{-1}\right)_{\infty}}(q-1)^{1-x} q^{\binom{x}{2}}, \quad q>1, \tag{1.3}
\end{equation*}
$$

where $(a ; q)_{\infty}=\prod_{j \geq 0}\left(1-a q^{j}\right)$.
The q-analogue of the psi function is defined for $0<q<1$ as the logarithmic derivative of the q-gamma function, that is,

$$
\psi_{q}(x)=\frac{d}{d x} \log \Gamma_{q}(x)
$$

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 3 of 16

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Many properties of the q-gamma function were derived by Askey [2]. It is well known that $\Gamma_{q}(x) \rightarrow \Gamma(x)$ and $\psi_{q}(x) \rightarrow \psi(x)$ as $q \rightarrow 1^{-}$. From (1.2), for $0<q<1$ and $x>0$ we get

$$
\begin{align*}
\psi_{q}(x) & =-\log (1-q)+\log q \sum_{n \geq 0} \frac{q^{n+x}}{1-q^{n+x}} \tag{1.4}\\
& =-\log (1-q)+\log q \sum_{n \geq 1} \frac{q^{n x}}{1-q^{n}}
\end{align*}
$$

and from (1.3) for $q>1$ and $x>0$ we obtain

$$
\begin{align*}
\psi_{q}(x) & =-\log (q-1)+\log q\left(x-\frac{1}{2}-\sum_{n \geq 0} \frac{q^{-n-x}}{1-q^{-n-x}}\right) \tag{1.5}\\
& =-\log (q-1)+\log q\left(x-\frac{1}{2}-\sum_{n \geq 1} \frac{q^{-n x}}{1-q^{-n}}\right) .
\end{align*}
$$

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 4 of 16

Go Back

Full Screen
Close
If $q \in(0,1)$, using the second representation of $\psi_{q}(x)$ given in (1.4), it can be shown that

$$
\begin{equation*}
\psi_{q}^{(k)}(x)=\log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} \cdot q^{n x}}{1-q^{n}} \tag{1.6}
\end{equation*}
$$

journal of inequalities in pure and applied mathematics
issn: 1443-575b
and hence $(-1)^{k-1} \psi_{q}^{(k)}(x)>0$ with $x>1$, for all $k \geq 1$. If $q>1$, from the second representation of $\psi_{q}(x)$ given in (1.5), we obtain

$$
\begin{equation*}
\psi_{q}^{\prime}(x)=\log q\left(1+\sum_{n \geq 1} \frac{n q^{-n x}}{1-q^{-n x}}\right) \tag{1.7}
\end{equation*}
$$

and for $k \geq 2$,

$$
\begin{equation*}
\psi_{q}^{(k)}(x)=(-1)^{k-1} \log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} q^{-n x}}{1-q^{-n x}} \tag{1.8}
\end{equation*}
$$

and hence $(-1)^{k-1} \psi_{q}^{(k)}(x)>0$ with $x>0$, for all $q>1$.
In this paper we derive several inequalities for $\psi^{(k)}(x)$, where $k \geq 0$.
Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 5 of 16	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
2. Inequalities of the type $f^{2}(x \cdot y) \lessgtr f(x) \cdot f(y)$

We start with the following lemma.
Lemma 2.1. For $0<q<\frac{1}{2}$ and $0<x<1$ we have that $\psi_{q}(x)<0$.
Proof. At first let us prove that $\psi_{q}(x)<0$ for all $x>0$. From (1.4) we get that

$$
\psi_{q}(x)=\frac{q^{x}}{1-q} \log q-\log (1-q)+\log q \sum_{n \geq 2} \frac{q^{n x}}{1-q^{n}}
$$

In order to see that $\psi_{q}(x)<0$, we need to show that the function

$$
g(x)=\frac{q^{x}}{1-q} \log q-\log (1-q)
$$

is a negative for all $0<x<1$ and $0<q<\frac{1}{2}$. Indeed $g^{\prime}(x)=\frac{q^{x}}{1-q} \log ^{2} q>0$, which implies that $g(x)$ is an increasing function on $0<x<1$, hence

$$
\begin{aligned}
g(x) & <g(1)=\frac{q}{1-q} \log q-\log (1-q) \\
& =\frac{1}{1-q} \log \frac{q^{q}}{(1-q)^{1-q}}<0,
\end{aligned}
$$

for all $0<q<\frac{1}{2}$.
Theorem 2.2. Let $0<q<\frac{1}{2}$ and $0<x, y<1$. Let $k \geq 0$ be an integer. Then

$$
\psi_{q}^{(k)}(x) \psi_{q}^{(k)}(y)<\left(\psi_{q}^{(k)}(x y)\right)^{2}
$$

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 6 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics

Proof. We will consider two different cases: (1) $k=0$ and (2) $k \geq 1$.
(1) Let $f(x)=\psi_{q}^{2}(x)$ defined on $0<x<1$. By Lemma 2.1 we have that

$$
f^{\prime}(x)=2 \psi_{q}(x) \psi_{q}^{\prime}(x)<0
$$

for all $0<x<1$, which gives that $f(x)$ is a decreasing function on $0<x<1$. Hence, for all $0<x, y<1$ we have

$$
\psi_{q}^{2}(x y)>\psi_{q}^{2}(x) \quad \text { and } \quad \psi_{q}^{2}(x y)>\psi_{q}^{2}(y)
$$

which gives that

$$
\psi_{q}^{4}(x y)>\psi_{q}^{2}(x) \psi_{q}^{2}(y)
$$

Since $\psi_{q}(x) \psi_{q}(y)>0$ for all $0<x, y<1$, see Lemma 2.1, we obtain that

$$
\psi_{q}^{2}(x y)>\psi_{q}(x) \psi_{q}(y)
$$

as claimed.
(2) From (1.6) we have that

$$
\begin{aligned}
& \psi_{q}^{(k)}(x) \psi_{q}^{(k)}(y)-\left(\psi_{q}^{(k)}(x y)\right)^{2} \\
& \quad=\left(\log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} q^{n x}}{1-q^{n}}\right)\left(\log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} q^{n y}}{1-q^{n}}\right)-\left(\log ^{k+1} q \sum_{n \geq 1} \frac{n^{k} q^{n x y}}{1-q^{n}}\right)^{2} \\
& \quad=\left(\log ^{k+1} q\right)^{2} \sum_{n, m \geq 1} \frac{n^{k} q^{n x}}{1-q^{n}} \cdot \frac{m^{k} q^{m y}}{1-q^{m}}-\left(\log ^{k+1} q\right)^{2} \sum_{n, m \geq 1} \frac{(n m)^{k} q^{(n+m) x y}}{\left(1-q^{n}\right)\left(1-q^{m}\right)} \\
& \quad=\left(\log ^{k+1} q\right)^{2} \sum_{n, m \geq 1} \frac{(n m)^{k}\left(q^{n x+m y}-q^{(n+m) x y}\right)}{\left(1-q^{n}\right)\left(1-q^{m}\right)} .
\end{aligned}
$$

For $0<x, y<1, q^{n x+m y}-q^{(n+m) x y}<0$ and for $x, y>1, q^{n x+m y}-q^{(n+m) x y}>0$ and the results follow.

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 7 of 16

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5?5b

Note that the above theorem for $k \geq 1$ remains true also for $q \in\left[\frac{1}{2}, 1\right]$. Also, if $x, y>1, k \geq 1$ and $0<q<1$ then

$$
\psi_{q}^{(k)}(x) \psi_{q}^{(k)}(y)>\left(\psi_{q}^{(k)}(x y)\right)^{2}
$$

Now we extend Lemma 2.1 to the case $q>1$. In order to do that we denote the zero of the function $f(q)=\frac{q-3}{2(q-1)} \log (q)-\log (q-1), q>1$, by q^{*}. The numerical solution shows that $q^{*} \approx 1.56683201 \ldots$ as shown on Figure 1.
Lemma 2.3. For $q>q^{*}$ and $0<x<1$ we have that $\psi_{q}(x)<0$.
Proof. From (1.5) we get that

$$
\psi_{q}(x)=-\frac{q^{-x}}{1-q^{-1}} \log q-\log (q-1)+\log q\left(x-\frac{1}{2}\right)-\log q \sum_{n \geq 2} \frac{q^{-n x}}{1-q^{-n}}
$$

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page
Contents
In order to show our claim, we need to prove that

$$
g(x)=-\frac{q^{-x}}{1-q^{-1}} \log q-\log (q-1)+\log q\left(x-\frac{1}{2}\right)<0
$$

on $0<x<1$. Since $g^{\prime}(x)=\frac{q^{-x}}{1-q^{-1}} \log ^{2} q+\log q>0$, it implies that $g(x)$ is an increasing function on $0<x<1$. Hence

$$
g(x)<g(1)=\frac{q-3}{2(q-1)} \log q-\log (q-1)<0
$$

for all $q>q^{*}$, see Figure 1 .
Theorem 2.4. Let $q>2$ and $0<x, y<1$. Let $k \geq 0$ be an integer. Then

$$
\psi_{q}^{(k)}(x) \psi_{q}^{(k)}(y)<\left(\psi_{q}^{(k)}(x y)\right)^{2}
$$

Page 8 of 16

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Figure 1: Graph of the function $\frac{q-3}{2(q-1)} \log q-\log (q-1)$.

Proof. As in the previous theorem we will consider two different cases: (1) $k=0$ and (2) $k \geq 1$.
(1) As shown in the introduction the function $\psi_{q}^{\prime}(x)$ is an increasing function on $0<x<1$. Therefore, for all $0<x, y<1$ we have that

$$
\psi_{q}(x y)<\psi_{q}(x) \quad \text { and } \quad \psi_{q}(x y)<\psi_{q}(y) .
$$

Hence, Lemma 2.3 gives that $\psi_{q}^{2}(x y)>\psi_{q}(x) \psi_{q}(y)$, as claimed.

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 9 of 16
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: l443-575b
(2) Analogous to the second case of Theorem 2.2.

Note that Theorem 2.4 for $k \geq 1$ remains true also for $q>1$. Also, if $x, y>1$, $k \geq 1$ and $q>1$ then

$$
\psi_{q}^{(k)}(x) \psi_{q}^{(k)}(y)>\left(\psi_{q}^{(k)}(x y)\right)^{2}
$$

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 10 of 16	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Inequalities of the Type $f(x+y) \lessgtr f(x)+f(y)$

The main goal of this section is to show that $\psi_{q}(x+y) \geq \psi_{q}(x)+\psi_{q}(y)$, for all $0<x, y<1$ and $0<q<1$. In order to do that we define

$$
\rho(q)=\log (1-q)+\log q \sum_{j \geq 1} \frac{q^{j}\left(q^{j}-2\right)}{1-q^{j}} .
$$

Lemma 3.1. For all $0<q<1, \rho(q)>0$.
Proof. Let $0<q<1$ and let $g_{m}(q)=c+\sum_{j=1}^{m-1} \frac{q^{j}\left(q^{j}-2\right)}{1-q^{j}}$ with constant $c>0$ for $m \geq 2$. Then $g_{m}(0)=c, \lim _{q \rightarrow 1^{-}} g_{m}(q)<0$ and $g_{m}(q)$ is a decreasing function since

$$
g_{m}^{\prime}(q)=-\sum_{j=1}^{m-1} \frac{j q^{j-1}\left(1+\left(1-q^{j}\right)^{2}\right)}{\left(1-q^{j}\right)^{2}}<0
$$

On the other hand

$$
g_{m+1}(q)-g_{m}(q)=\frac{q^{m}\left(q^{m}-2\right)}{1-q^{m}}<0
$$

for all $0<q<1$. Hence, for all $m \geq 2$ we have that

$$
g_{m+1}(q)<g_{m}(q), \quad 0<q<1
$$

Thus, if b_{m} is the positive zero of the function $g_{m}(q)$ (because $g_{n}(q)$ is decreasing) on $0<q<1$ (by Maple or any mathematical programming we can see that $b_{1}=$ $0.38196601 \ldots, b_{2}=0.3184588966$ and $\left.b_{3}=0.3055970874\right)$, then $g_{m}(q)>0$ for all $0<q<b_{m}$ and $g_{m}(q)<0$ for all $b_{m}<q<1$. Furthermore, the sequence $\left\{b_{m}\right\}_{m \geq 0}$ is a strictly decreasing sequence of positive real numbers, that is $0<b_{m+1}<b_{m}$,

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 11 of 16

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and bounded by zero, which implies that

$$
\lim _{m \rightarrow \infty} g_{m}(q)=c+\sum_{j \geq 1} \frac{q^{j}\left(q^{j}-2\right)}{1-q^{j}}<0
$$

for all $0<q<1$. Hence, if we choose $c=\frac{2 \log (1-q)}{\log q}(c$ is positive since $0<q<1)$, then we have that

$$
\sum_{j \geq 1} \frac{q^{j}\left(q^{j}-2\right)}{1-q^{j}}<-\frac{2 \log (1-q)}{\log q}
$$

which implies that

$$
\begin{aligned}
\rho(q) & =\log (1-q)+\log q \sum_{j \geq 1} \frac{q^{j}\left(q^{j}-2\right)}{1-q^{j}} \\
& >-2 \log (1-q)+\log (1-q) \\
& =-\log (1-q)>0,
\end{aligned}
$$

as requested.

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 12 of 16

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics

Since $0<x, y, q<1$, we have that

$$
\begin{aligned}
q^{n(x+y)}-q^{n x}-q^{n y} & =\left(1-q^{n x}\right)\left(1-q^{n y}\right)-1 \\
& <\left(1-q^{n}\right)^{2}-1 \\
& =q^{n}\left(q^{n}-2\right) .
\end{aligned}
$$

Hence, by Lemma 3.1

$$
\psi_{q}(x+y)-\psi_{q}(x)-\psi_{q}(y)>\rho(q)>0
$$

which completes the proof.
The above theorem is not true for $x, y>1$, for example

$$
\begin{aligned}
& \psi_{1 / 10}(4)=0.1051046497 \ldots, \quad \psi_{1 / 10}(5)=0.1053349312 \ldots, \\
& \psi_{1 / 10}(9)=0.1053605131 \ldots
\end{aligned}
$$

Theorem 3.3. For all $q>1$ and $0<x, y<1$,

$$
\psi_{q}(x+y)>\psi_{q}(x)+\psi_{q}(y) .
$$

Proof. From the definitions we have that
$\psi_{q}(x+y)-\psi_{q}(x)-\psi_{q}(y)=\log (q-1)+\frac{1}{2} \log q+\log Q \sum_{n \geq 1} \frac{Q^{n(x+y)}-Q^{n x}-Q^{n y}}{1-Q^{n}}$,
where $Q=1 / q$. Thus

$$
\begin{aligned}
\psi_{q}(x+y) & -\psi_{q}(x)-\psi_{q}(y) \\
= & \log (q-1)+\frac{1}{2} \log q+\psi_{Q}(x+y)-\psi_{Q}(x)-\psi_{Q}(y)-\log (1-Q)
\end{aligned}
$$

Page 13 of 16

Go Back

Full Screen
Close
Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

再
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Using Theorem 3.2 we get that

$$
\psi_{q}(x+y)-\psi_{q}(x)-\psi_{q}(y)>\log (q-1)+\frac{1}{2} \log q-\log (q-1)+\log q>0
$$

which completes the proof.
Note that the above theorem holds for $q>2$ and $x, y>1$, since

$$
\begin{aligned}
& \psi_{q}(x+y)-\psi_{q}(x)-\psi_{q}(y) \\
& \quad=\log (q-1)+\frac{1}{2} \log q+\log q \sum_{n \geq 1} \frac{q^{-n x}\left(1-q^{-n y}\right)+q^{-n y}}{1-q^{-n}}>0 .
\end{aligned}
$$

The above theorem is not true for $x, y>1$ when $1<q<2$, for example

$$
\begin{aligned}
\psi_{3 / 2}(4) & =1.83813910 \ldots, \quad \psi_{3 / 2}(5)=2.34341101 \ldots, \\
\psi_{3 / 2}(9) & =4.10745515 \ldots
\end{aligned}
$$

Theorem 3.4. Let $q \in(0,1)$. Let $k \geq 1$ be an integer.
(1) If k is even then

$$
\psi_{q}^{(k)}(x+y) \geq \psi_{q}^{(k)}(x)+\psi_{q}^{(k)}(y)
$$

(2) If k is odd then

$$
\psi_{q}^{(k)}(x+y) \leq \psi_{q}^{(k)}(x)+\psi_{q}^{(k)}(y)
$$

Proof. From (1.6) we have

$$
\psi_{q}^{k}(x+y)-\psi_{q}^{k}(x)-\psi_{q}^{k}(x)=\log ^{k+1} q \sum_{n \geq 1} \frac{n^{k}}{1-q^{n}}\left(q^{n(x+y)}-q^{n x}-q^{n y}\right)
$$

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 14 of 16

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since the function $f(z)=q^{n z}$ is convex from

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(f(x)+f(y))
$$

we obtain that

$$
\begin{equation*}
2 \cdot q^{n \frac{x+y}{2}} \leq q^{n x}+q^{n y} \tag{3.1}
\end{equation*}
$$

On the other hand it is clear that

$$
\begin{equation*}
2 \cdot q^{n \frac{x+y}{2}}>q^{n(x+y)} . \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2) we have that

$$
q^{n(x+y)}-q^{n x}-q^{n y}<0 .
$$

(1) Since for $q \in(0,1)$ and k even we have $\log ^{k+1} q<0$, hence

$$
\psi_{q}^{(k)}(x+y)-\psi_{q}^{(k)}(x)-\psi_{q}^{(k)}(x) \geq 0 .
$$

(2) The other case can be proved in a similar manner.

Using a similar approach one may prove analogue results for $q>1$.

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani vol. 10, iss. 1, art. 12, 2009

Title Page

Contents

Page 15 of 16

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] M. ABRAMOWITZ AND I.A. STEGUN, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, NewYork, 1965.
[2] R. ASKEY, The q-gamma and q-beta functions, Applicable Anal., 8(2) (1978/79) 125-141.
[3] B.C. BERNDT, Ramanujan's Notebook, Part IV. Springer, New York 1994.
[4] M.E.H. ISMAIL And M.E. MULDOON, Inequalities and monotonicity properties for gamma and q-gamma functions, in: R.V.M. Zahar (Ed.), Approximation and Computation, International Series of Numerical Mathematics, vol. 119, Birkhäuser, Boston, MA, 1994, pp. 309-323.
[5] T. KIM, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory, 76 (1999), 320-329.
[6] T. KIM, A note on the q-multiple zeta functions, Advan. Stud. Contemp. Math., 8 (2004), 111-113.
[7] T. KIM AND S.H. RIM, A note on the q-integral and q-series, Advanced Stud. Contemp. Math., 2 (2000), 37-45.
[8] H.M. SRIVASTAVA, T. KIM AND Y. SIMSEK, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russian J. Math. Phys., 12 (2005), 241-268.

Some Inequalities for the q-Digamma Function Toufik Mansour and Armend Sh. Shabani
vol. 10, iss. 1, art. 12, 2009

Title Page
Contents

Page 16 of 16

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

