Journal of Inequalities in Pure and

 Applied Mathematicshttp://jipam.vu.edu.au/
Volume 6, Issue 3, Article 84, 2005

LITTLEWOOD-PALEY g-FUNCTION IN THE DUNKL ANALYSIS ON \mathbb{R}^{d}

FETHI SOLTANI
Department of Mathematics
Faculty of Sciences of Tunis
University of EL-Manar Tunis 2092 Tunis, Tunisia
Fethi.Soltani@fst.rnu.tn
Received 11 October, 2004; accepted 22 July, 2005
Communicated by S.S. Dragomir

AbStract. We prove L^{p}-inequality for the Littlewood-Paley g-function in the Dunkl case on \mathbb{R}^{d}.

Key words and phrases: Dunkl operators, Generalized Poisson integral, g-function.
2000 Mathematics Subject Classification 42B15, 42B25.

1. Introduction

In the Euclidean case, the Littlewood-Paley g-function is given by

$$
g(f)(x):=\left[\int_{0}^{\infty}\left(\left|\frac{\partial}{\partial t} u(x, t)\right|^{2}+\left|\nabla_{x} u(x, t)\right|^{2}\right) t d t\right]^{\frac{1}{2}}, \quad x \in \mathbb{R}^{d}
$$

where u is the Poisson integral of f and ∇ is the usual gradient. The L^{p}-norm of this operator is comparable with the L^{p}-norm of f for $\left.p \in\right] 1, \infty[$ (see [19]). Next, this operator plays an important role in questions related to multipliers, Sobolev spaces and Hardy spaces (see [19]).
Over the past twenty years considerable effort has been made to extend the Littlewood-Paley g-function on generalized hypergroups [20, 1, 2], and complete Riemannian manifolds [4].

In this paper we consider the differential-difference operators $T_{j} ; j=1, \ldots, d$, on \mathbb{R}^{d} introduced by Dunkl in [5] and aptly called Dunkl operators in the literature. These operators extend the usual partial derivatives by additional reflection terms and give generalizations of many multi-variable analytic structures like the exponential function, the Fourier transform, the convolution product and the Poisson integral (see [12, 23, 16] and [13]).

During the last years, these operators have gained considerable interest in various fields of mathematics and in certain parts of quantum mechanics; one expects that the results in this paper will be useful when discussing the boundedness property of the Littlewood-Paley g-function in

[^0]the Dunkl analysis on \mathbb{R}^{d}. Moreover they are naturally connected with certain Schrödinger operators for Calogero-Sutherland-type quantum many body systems [3, 9].

The main purpose of this paper is to give the L^{p}-inequality for the Littlewood-Paley g function in the Dunkl case on \mathbb{R}^{d} by using continuity properties of the Dunkl transform \mathcal{F}_{k}, the Dunkl translation operators of radial functions and the generalized convolution product $*_{k}$. We will adapt to this case techniques Stein used in [18, 19].

The paper is organized as follows. In Section 2 we recall some basic harmonic analysis results related to the Dunkl operators on \mathbb{R}^{d}. In particular, we list some basic properties of the Dunkl transform \mathcal{F}_{k} and the generalized convolution product $*_{k}$ (see [8, 23, 15]).

In Section 3 we study the Littlewood-Paley g-function:

$$
g(f)(x):=\left[\int_{0}^{\infty}\left(\left|\frac{\partial}{\partial t} u_{k}(x, t)\right|^{2}+\left|\nabla_{x} u_{k}(x, t)\right|^{2}\right) t d t\right]^{\frac{1}{2}}, \quad x \in \mathbb{R}^{d}
$$

where $u_{k}(\cdot, t)$ is the generalized Poisson integral of f.
We prove that g is L^{p}-boundedness for $\left.\left.p \in\right] 1,2\right]$.
Throughout the paper c denotes a positive constant whose value may vary from line to line.

2. The Dunkl Analysis on \mathbb{R}^{d}

We consider \mathbb{R}^{d} with the Euclidean inner product $\langle\cdot, \cdot\rangle$ and norm $\|x\|=\sqrt{\langle x, x\rangle}$.
For $\alpha \in \mathbb{R}^{d} \backslash\{0\}$, let σ_{α} be the reflection in the hyperplane $H_{\alpha} \subset \mathbb{R}^{d}$ orthogonal to α :

$$
\sigma_{\alpha} x:=x-\left(\frac{2\langle\alpha, x\rangle}{\|\alpha\|^{2}}\right) \alpha .
$$

A finite set $R \subset \mathbb{R}^{d} \backslash\{0\}$ is called a root system, if $R \cap \mathbb{R}, \alpha=\{-\alpha, \alpha\}$ and $\sigma_{\alpha} R=R$ for all $\alpha \in R$. We assume that it is normalized by $\|\alpha\|^{2}=2$ for all $\alpha \in R$.

For a root system R, the reflections $\sigma_{\alpha}, \alpha \in R$ generate a finite group $G \subset O(d)$, the reflection group associated with R. All reflections in G, correspond to suitable pairs of roots. For a given $\beta \in H:=\mathbb{R}^{d} \backslash \bigcup_{\alpha \in R} H_{\alpha}$, we fix the positive subsystem:

$$
R_{+}:=\{\alpha \in R /\langle\alpha, \beta\rangle>0\} .
$$

Then for each $\alpha \in R$ either $\alpha \in R_{+}$or $-\alpha \in R_{+}$.
Let $k: R \rightarrow \mathbb{C}$ be a multiplicity function on R (i.e. a function which is constant on the orbits under the action of G). For brevity, we introduce the index:

$$
\gamma=\gamma(k):=\sum_{\alpha \in R_{+}} k(\alpha) .
$$

Moreover, let w_{k} denote the weight function:

$$
w_{k}(x):=\prod_{\alpha \in R_{+}}|\langle\alpha, x\rangle|^{2 k(\alpha)}, \quad x \in \mathbb{R}^{d},
$$

which is G-invariant and homogeneous of degree 2γ.
We introduce the Mehta-type constant c_{k}, by

$$
\begin{equation*}
c_{k}:=\left(\int_{\mathbb{R}^{d}} e^{-\|x\|^{2}} d \mu_{k}(x)\right)^{-1}, \quad \text { where } \quad d \mu_{k}(x):=w_{k}(x) d x . \tag{2.1}
\end{equation*}
$$

The Dunkl operators $T_{j} ; j=1, \ldots, d$, on \mathbb{R}^{d} associated with the finite reflection group G and multiplicity function k are given for a function f of class C^{1} on \mathbb{R}^{d}, by

$$
T_{j} f(x):=\frac{\partial}{\partial x_{j}} f(x)+\sum_{\alpha \in R_{+}} k(\alpha) \alpha_{j} \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle} .
$$

The generalized Laplacian Δ_{k} associated with G and k, is defined by $\Delta_{k}:=\sum_{j=1}^{d} T_{j}^{2}$. It is given explicitly by

$$
\begin{equation*}
\Delta_{k} f(x):=L_{k} f(x)-2 \sum_{\alpha \in R_{+}} k(\alpha) \frac{f(x)-f\left(\sigma_{\alpha} x\right)}{\langle\alpha, x\rangle^{2}} \tag{2.2}
\end{equation*}
$$

with the singular elliptic operator:

$$
\begin{equation*}
L_{k} f(x):=\Delta f(x)+2 \sum_{\alpha \in R_{+}} k(\alpha) \frac{\langle\nabla f(x), \alpha\rangle}{\langle\alpha, x\rangle}, \tag{2.3}
\end{equation*}
$$

where Δ denotes the usual Laplacian.
The operator L_{k} can also be written in divergence form:

$$
\begin{equation*}
L_{k} f(x)=\frac{1}{w_{k}(x)} \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}}\left(w_{k}(x) \frac{\partial}{\partial x_{i}}\right) . \tag{2.4}
\end{equation*}
$$

This is a canonical multi-variable generalization of the Sturm-Liouville operator for the classical spherical Bessel function [1, 2, 20].

For $y \in \mathbb{R}^{d}$, the initial value problem $T_{j} u(x, \cdot)(y)=x_{j} u(x, y) ; j=1, \ldots, d$, with $u(0, y)=$ 1 admits a unique analytic solution on \mathbb{R}^{d}, which will be denoted by $E_{k}(x, y)$ and called a Dunkl kernel [6, 14, 16, 23].

This kernel has the Bochner-type representation (see [12]):

$$
\begin{equation*}
E_{k}(x, z)=\int_{\mathbb{R}^{d}} e^{\langle y, z\rangle} d \Gamma_{x}(y) ; \quad x \in \mathbb{R}^{d}, z \in \mathbb{C}^{d} \tag{2.5}
\end{equation*}
$$

where $\langle y, z\rangle:=\sum_{i=1}^{d} y_{i} z_{i}$ and Γ_{x} is a probability measure on \mathbb{R}^{d} with support in the closed ball $B_{d}(o,\|x\|)$ of center o and radius $\|x\|$.

Example 2.1 (see [23, p. 21]). If $G=\mathbb{Z}_{2}$, the Dunkl kernel is given by

$$
E_{\gamma}(x, z)=\frac{\Gamma\left(\gamma+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma(\gamma)} \cdot \frac{\operatorname{sgn}(x)}{|x|^{2 \gamma}} \int_{-|x|}^{|x|} e^{y z}\left(x^{2}-y^{2}\right)^{\gamma-1}(x+y) d y
$$

Notation. We denote by $\mathcal{D}\left(\mathbb{R}^{d}\right)$ the space of C^{∞}-functions on \mathbb{R}^{d} with compact support.
The Dunkl kernel gives an integral transform, called the Dunkl transform on \mathbb{R}^{d}, which was studied by de Jeu in [8]. The Dunkl transform of a function f in $\mathcal{D}\left(\mathbb{R}^{d}\right)$ is given by

$$
\mathcal{F}_{k}(f)(x):=\int_{\mathbb{R}^{d}} E_{k}(-i x, y) f(y) d \mu_{k}(y), \quad x \in \mathbb{R}^{d}
$$

Note that \mathcal{F}_{0} agrees with the Fourier transform \mathcal{F} on \mathbb{R}^{d} :

$$
\mathcal{F}(f)(x):=\int_{\mathbb{R}^{d}} e^{-i\langle x, y\rangle} f(y) d y, \quad x \in \mathbb{R}^{d}
$$

The Dunkl transform of a function $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ which is radial is again radial, and could be computed via the associated Fourier-Bessel transform $\mathcal{F}_{\gamma+d / 2-1}^{B}$ [11, p. 586] that is:

$$
\mathcal{F}_{k}(f)(x)=2^{\gamma+d / 2} c_{k}^{-1} \mathcal{F}_{\gamma+d / 2-1}^{B}(F)(\|x\|)
$$

where $f(x)=F(\|x\|)$, and

$$
\mathcal{F}_{\gamma+d / 2-1}^{B}(F)(\|x\|):=\int_{0}^{\infty} F(r) \frac{j_{\gamma+d / 2-1}(\|x\| r)}{2^{\gamma+d / 2-1} \Gamma\left(\gamma+\frac{d}{2}\right)} r^{2 \gamma+d-1} d r
$$

Here j_{γ} is the spherical Bessel function [24].
Notations. We denote by $L_{k}^{p}\left(\mathbb{R}^{d}\right), p \in[1, \infty]$, the space of measurable functions f on \mathbb{R}^{d}, such that

$$
\begin{aligned}
\|f\|_{L_{k}^{p}} & :=\left[\int_{\mathbb{R}^{d}}|f(x)|^{p} d \mu_{k}(x)\right]^{\frac{1}{p}}<\infty, \quad p \in[1, \infty[, \\
\|f\|_{L_{k}^{\infty}} & :=\operatorname{ess} \sup _{x \in \mathbb{R}^{d}}|f(x)|<\infty
\end{aligned}
$$

where μ_{k} is the measure given by (2.1).
Theorem 2.1 (see [7]).
i) Plancherel theorem: the normalized Dunkl transform $2^{-\gamma-d / 2} c_{k} \mathcal{F}_{k}$ is an isometric automorphism on $L_{k}^{2}\left(\mathbb{R}^{d}\right)$. In particular,

$$
\|f\|_{L_{k}^{2}}=2^{-\gamma-d / 2} c_{k}\left\|\mathcal{F}_{k}(f)\right\|_{L_{k}^{2}} .
$$

ii) Inversion formula: let f be a function in $L_{k}^{1}\left(\mathbb{R}^{d}\right)$, such that $\mathcal{F}_{k}(f) \in L_{k}^{1}\left(\mathbb{R}^{d}\right)$. Then

$$
\mathcal{F}_{k}^{-1}(f)(x)=2^{-2 \gamma-d} c_{k}^{2} \mathcal{F}_{k}(f)(-x), \quad \text { a.e. } x \in \mathbb{R}^{d}
$$

In [6], Dunkl defines the intertwining operator V_{k} on $\mathcal{P}:=\mathbb{C}\left[\mathbb{R}^{d}\right]$ (the \mathbb{C}-algebra of polynomial functions on \mathbb{R}^{d}), by

$$
V_{k}(p)(x):=\int_{\mathbb{R}^{d}} p(y) d \Gamma_{x}(y), \quad x \in \mathbb{R}^{d}
$$

where Γ_{x} is the representing measure on \mathbb{R}^{d} given by 2.5).
Next, Rösler proved the positivity properties of this operator (see [12]).
Notation. We denote by $\mathcal{E}\left(\mathbb{R}^{d}\right)$ and by $\mathcal{E}^{\prime}\left(\mathbb{R}^{d}\right)$ the spaces of C^{∞}-functions on \mathbb{R}^{d} and of distributions on \mathbb{R}^{d} with compact support respectively.

In [22, Theorem 6.3], Trimèche has proved the following results:

Proposition 2.2.

i) The operator V_{k} can be extended to a topological automorphism on $\mathcal{E}\left(\mathbb{R}^{d}\right)$.
ii) For all $x \in \mathbb{R}^{d}$, there exists a unique distribution $\eta_{k, x}$ in $\mathcal{E}^{\prime}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp}\left(\eta_{k, x}\right) \subset\{y \in$ $\left.\mathbb{R}^{d} /\|y\| \leq\|x\|\right\}$, such that

$$
\left(V_{k}\right)^{-1}(f)(x)=\left\langle\eta_{k, x}, f\right\rangle, \quad f \in \mathcal{E}\left(\mathbb{R}^{d}\right) .
$$

Next in [23], the author defines:

- The Dunkl translation operators $\tau_{x}, x \in \mathbb{R}^{d}$, on $\mathcal{E}\left(\mathbb{R}^{d}\right)$, by

$$
\tau_{x} f(y):=\left(V_{k}\right)_{x} \otimes\left(V_{k}\right)_{y}\left[\left(V_{k}\right)^{-1}(f)(x+y)\right], \quad y \in \mathbb{R}^{d}
$$

These operators satisfy for x, y and $z \in \mathbb{R}^{d}$ the following properties:

$$
\begin{gather*}
\tau_{0} f=f, \quad \tau_{x} f(y)=\tau_{y} f(x), \tag{2.6}\\
E_{k}(x, z) E_{k}(y, z)=\tau_{x}\left(E_{k}(\cdot, z)\right)(x)
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{F}_{k}\left(\tau_{x} f\right)(y)=E_{k}(i x, y) \mathcal{F}_{k}(f)(y), \quad f \in \mathcal{D}\left(\mathbb{R}^{d}\right) \tag{2.7}
\end{equation*}
$$

Thus by 2.7), the Dunkl translation operators can be extended on $L_{k}^{2}\left(\mathbb{R}^{d}\right)$, and for $x \in \mathbb{R}^{d}$ we have

$$
\left\|\tau_{x} f\right\|_{L_{k}^{2}} \leq\|f\|_{L_{k}^{2}}, \quad f \in L_{k}^{2}\left(\mathbb{R}^{d}\right) .
$$

- The generalized convolution product $*_{k}$ of two functions f and g in $L_{k}^{2}\left(\mathbb{R}^{d}\right)$, by

$$
f *_{k} g(x):=\int_{\mathbb{R}^{d}} \tau_{x} f(-y) g(y) d \mu_{k}(y), \quad x \in \mathbb{R}^{d}
$$

Note that $*_{0}$ agrees with the standard convolution $*$ on \mathbb{R}^{d} :

$$
f * g(x):=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y, \quad x \in \mathbb{R}^{d} .
$$

The generalized convolution $*_{k}$ satisfies the following properties:

Proposition 2.3.

i) Let $f, g \in \mathcal{D}\left(\mathbb{R}^{d}\right)$. Then

$$
\mathcal{F}_{k}\left(f *_{k} g\right)=\mathcal{F}_{k}(f) \mathcal{F}_{k}(g) .
$$

ii) Let $f, g \in L_{k}^{2}\left(\mathbb{R}^{d}\right)$. Then $f *_{k} g$ belongs to $L_{k}^{2}\left(\mathbb{R}^{d}\right)$ if and only if $\mathcal{F}_{k}(f) \mathcal{F}_{k}(g)$ belongs to $L_{k}^{2}\left(\mathbb{R}^{d}\right)$ and we have

$$
\mathcal{F}_{k}\left(f *_{k} g\right)=\mathcal{F}_{k}(f) \mathcal{F}_{k}(g), \quad \text { in the } L_{k}^{2}-\text { case } .
$$

Proof. The assertion i) is shown in [23, Theorem 7.2]. We can prove ii) in the same manner demonstrated in [21, p. 101-103].

Theorem 2.4. Let p, $q, r \in[1, \infty]$ satisfy the Young's condition: $1 / p+1 / q=1+1 / r$. Assume that $f \in L_{k}^{p}\left(\mathbb{R}^{d}\right)$ and $g \in L_{k}^{q}\left(\mathbb{R}^{d}\right)$. If $\left\|\tau_{x} f\right\|_{L_{k}^{q}} \leq c\|f\|_{L_{k}^{q}}$ for all $x \in \mathbb{R}^{d}$, then

$$
\left\|f *_{k} g\right\|_{L_{k}^{r}} \leq c\|f\|_{L_{k}^{p}}\|g\|_{L_{k}^{q}} .
$$

Proof. The assumption that τ_{x} is a bounded operator on $L_{k}^{p}\left(\mathbb{R}^{d}\right)$ ensures that the usual proof of Young's inequality (see [25, p. 37]) works.

Proposition 2.5.

i) If $f(x)=F(\|x\|)$ in $\mathcal{E}\left(\mathbb{R}^{d}\right)$, then we have

$$
\tau_{x} f(y)=\int_{\mathcal{A}_{x, y}} F\left(\sqrt{\|x\|^{2}+\|y\|^{2}+2\langle y, \xi\rangle}\right) d \Gamma_{x}(\xi) ; \quad x, y \in \mathbb{R}^{d}
$$

where

$$
\mathcal{A}_{x, y}=\left\{\xi \in \mathbb{R}^{d} / \min _{g \in G}\|x+g y\| \leq\|\xi\| \leq \max _{g \in G}\|x+g y\|\right\},
$$

and Γ_{x} the representing measure given by (2.5).
ii) For all $x \in \mathbb{R}^{d}$ and for $f \in L_{k}^{p}\left(\mathbb{R}^{d}\right)$, radial, $p \in[1, \infty]$,

$$
\left\|\tau_{x} f\right\|_{L_{k}^{p}} \leq\|f\|_{L_{k}^{p}} .
$$

iii) Let $p, q, r \in[1, \infty]$ satisfy the Young's condition: $1 / p+1 / q=1+1 / r$. Assume that $f \in L_{k}^{p}\left(\mathbb{R}^{d}\right)$, radial, and $g \in L_{k}^{q}\left(\mathbb{R}^{d}\right)$, then

$$
\left\|f *_{k} g\right\|_{L_{k}^{r}} \leq\|f\|_{L_{k}^{p}}\|g\|_{L_{k}^{q}} .
$$

Proof. The assertion i) is shown by Rösler in [13, Theorem 5.1].
ii) Since f is a radial function, the explicit formula of $\tau_{x} f$ shows that

$$
\left|\tau_{x} f(y)\right| \leq \tau_{x}(|f|)(y)
$$

Hence, it follows readily from (2.6) that

$$
\left\|\tau_{x} f\right\|_{L_{k}^{1}} \leq\|f\|_{L_{k}^{1}}
$$

By duality the same inequality holds for $p=\infty$.
Thus by interpolation we obtain the result for $p \in] 1, \infty[$.
iii) follows directly from Theorem 2.4 .

Notation. For all $x, y, z \in \mathbb{R}$, we put

$$
W_{\gamma}(x, y, z):=\left[1-\sigma_{x, y, z}+\sigma_{z, x, y}+\sigma_{z, y, x}\right] B_{\gamma}(|x|,|y|,|z|),
$$

where

$$
\sigma_{x, y, z}:= \begin{cases}\frac{x^{2}+y^{2}-z^{2}}{2 x y}, & \text { if } x, y \in \mathbb{R} \backslash\{0\} \\ 0, & \text { otherwise }\end{cases}
$$

and B_{γ} is the Bessel kernel given by

$$
\begin{aligned}
B_{\gamma}(|x|,|y|,|z|) & := \begin{cases}d_{\gamma} \frac{\left[\left((|x|+|y|)^{2}-z^{2}\right)\left(z^{2}-(|x|-|y|)^{2}\right)\right]^{\gamma-1}}{|x y z|^{2 \gamma-1},} & \text { if }|z| \in A_{x, y} \\
0, & \text { otherwise, }\end{cases} \\
d_{\gamma} & =\frac{2^{-2 \gamma+1} \Gamma\left(\gamma+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma(\gamma)}, \quad A_{x, y}=[||x|-|y||,|x|+|y|] .
\end{aligned}
$$

Remark 2.6 (see [10]). The signed kernel W_{γ} is even and satisfies:

$$
\begin{aligned}
W_{\gamma}(x, y, z)=W_{\gamma}(y, x, z) & =W_{\gamma}(-x, z, y), \\
W_{\gamma}(x, y, z)=W_{\gamma}(-z, y,-x) & =W_{\gamma}(-x,-y,-z)
\end{aligned}
$$

and

$$
\int_{\mathbb{R}}\left|W_{\gamma}(x, y, z)\right| d z \leq 4
$$

We consider the signed measures $\nu_{x, y}$ (see [10]) defined by

$$
d \nu_{x, y}(z):= \begin{cases}W_{\gamma}(x, y, z)|z|^{2 \gamma} d z, & \text { if } x, y \in \mathbb{R} \backslash\{0\} \\ d \delta_{x}(z), & \text { if } y=0 \\ d \delta_{y}(z), & \text { if } x=0\end{cases}
$$

The measures $\nu_{x, y}$ have the following properties:

$$
\operatorname{supp}\left(\nu_{x, y}\right)=A_{x, y} \cup\left(-A_{x, y}\right), \quad\left\|\nu_{x, y}\right\|:=\int_{\mathbb{R}} d\left|\nu_{x, y}\right| \leq 4
$$

Proposition 2.7 (see [10, 15]). If $d=1$ and $G=\mathbb{Z}_{2}$, then
i) For all $x, y \in \mathbb{R}$ and for f a continuous function on \mathbb{R}, we have

$$
\tau_{x} f(y)=\int_{A_{x, y}} f(\xi) d \nu_{x, y}(\xi)+\int_{\left(-A_{x, y)}\right.} f(\xi) d \nu_{x, y}(\xi)
$$

ii) For all $x \in \mathbb{R}$ and for $f \in L_{\gamma}^{p}(\mathbb{R}), p \in[1, \infty]$,

$$
\left\|\tau_{x} f\right\|_{L_{\gamma}^{p}} \leq 4\|f\|_{L_{\gamma}^{p}} .
$$

iii) Assume that $p, q, r \in[1, \infty]$ satisfy the Young's condition: $1 / p+1 / q=1+1 / r$. Then the map $(f, g) \rightarrow f *_{\gamma} g$ extends to a continuous map from $L_{\gamma}^{p}(\mathbb{R}) \times L_{\gamma}^{q}(\mathbb{R})$ to $L_{\gamma}^{r}(\mathbb{R})$ and we have

$$
\left\|f *_{\gamma} g\right\|_{L_{\gamma}^{r}} \leq 4\|f\|_{L_{\gamma}^{p}}\|g\|_{L_{\gamma}^{q}} .
$$

3. The Littlewood-Paley g-Function

By analogy with the case of Euclidean space [19, p. 61] we define, for $t>0$, the functions W_{t} and P_{t} on \mathbb{R}^{d}, by

$$
W_{t}(x):=2^{-2 \gamma-d} c_{k}^{2} \int_{\mathbb{R}^{d}} e^{-t\|\xi\|^{2}} E_{k}(i x, \xi) d \mu_{k}(\xi), \quad x \in \mathbb{R}^{d}
$$

and

$$
P_{t}(x):=2^{-2 \gamma-d} c_{k}^{2} \int_{\mathbb{R}^{d}} e^{-t\|\xi\|} E_{k}(i x, \xi) d \mu_{k}(\xi), \quad x \in \mathbb{R}^{d}
$$

The function W_{t}, may be called the generalized heat kernel and the function P_{t}, the generalized Poisson kernel respectively.

From [23, p. 37] we have

$$
W_{t}(x)=\frac{c_{k}}{(4 t)^{\gamma+d / 2}} e^{-\|x\|^{2} / 4 t}, \quad x \in \mathbb{R}^{d} .
$$

Writing

$$
\begin{equation*}
P_{t}(x)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-s}}{\sqrt{s}} W_{t^{2} / 4 s}(x) d s, \quad x \in \mathbb{R}^{d} \tag{3.1}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
P_{t}(x)=\frac{a_{k} t}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+(d+1) / 2}}, \quad a_{k}:=\frac{c_{k} \Gamma\left(\gamma+\frac{d+1}{2}\right)}{\sqrt{\pi}} . \tag{3.2}
\end{equation*}
$$

However, for $t>0$ and for all $f \in L_{k}^{p}\left(\mathbb{R}^{d}\right), p \in[1, \infty]$, we put:

$$
u_{k}(x, t):=P_{t} *_{k} f(x), \quad x \in \mathbb{R}^{d} .
$$

The function u_{k} is called the generalized Poisson integral of f, which was studied by Rösler in [11, 13].
Let us consider the Littlewood-Paley g-function (in the Dunkl case). This auxiliary operator is defined initially for $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, by

$$
g(f)(x):=\left[\int_{0}^{\infty}\left(\left|\frac{\partial}{\partial t} u_{k}(x, t)\right|^{2}+\left|\nabla_{x} u_{k}(x, t)\right|^{2}\right) t d t\right]^{\frac{1}{2}}, \quad x \in \mathbb{R}^{d}
$$

where u_{k} is the generalized Poisson integral.
The main result of the paper is:
Theorem 3.1. For $p \in] 1,2]$, there exists a constant $A_{p}>0$ such that, for $f \in L_{k}^{p}\left(\mathbb{R}^{d}\right)$,

$$
\|g(f)\|_{L_{k}^{p}} \leq A_{p}\|f\|_{L^{p}}
$$

For the proof of this theorem we need the following lemmas:
Lemma 3.2. Let $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ be a positive function.
i) $u_{k}(x, t) \geq 0$ and $\left|\frac{\partial^{N} u_{k}}{\partial t^{N}}(x, t)\right| \leq \frac{c}{t^{2 \gamma+d+N}} ; \quad k \in \mathbb{N}$ and $x \in \mathbb{R}^{d}$.
ii) For $\|x\|$ large we have

$$
u_{k}(x, t) \leq \frac{c}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+d / 2}} \text { and }\left|\frac{\partial u_{k}}{\partial x_{i}}(x, t)\right| \leq \frac{c}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+(d+1) / 2}}
$$

Proof. i) If the generalized Poisson kernel P_{t} is a positive radial function, then from Proposition 2.5 i) we obtain $u_{k}(x, t) \geq 0$.

On the other hand from Proposition 2.5 iii) we have

$$
\left|\frac{\partial^{N} u_{k}}{\partial t^{N}}(x, t)\right| \leq\|f\|_{L_{k}^{1}}\left\|\frac{\partial^{N} P_{t}}{\partial t^{N}}\right\|_{L_{k}^{\infty}}
$$

Then we obtain the result from the fact that

$$
\left\|\frac{\partial^{N} P_{t}}{\partial t^{N}}\right\|_{L_{k}^{\infty}} \leq \frac{c}{t^{2 \gamma+d+N}}
$$

ii) From Proposition 2.5 i) we can write

$$
\tau_{x} P_{t}(-y)=a_{k} \int_{\mathbb{R}^{d}} \frac{t d \Gamma_{x}(\xi)}{\left[t^{2}+\|x\|^{2}+\|y\|^{2}-2\langle y, \xi\rangle\right]^{\gamma+(d+1) / 2}} ; \quad x, y \in \mathbb{R}
$$

where a_{k} is the constant given by (3.2).
Since $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, there exists $a>0$, such that $\operatorname{supp}(f) \subset B_{d}(o, a)$. Then

$$
u_{k}(x, t)=a_{k} \int_{B_{d}(o, a)} \int_{\mathcal{A}_{x, y}} \frac{t f(y) d \Gamma_{x}(\xi) d \mu_{k}(y)}{\left[t^{2}+\|x\|^{2}+\|y\|^{2}-2\langle y, \xi\rangle\right]^{\gamma+(d+1) / 2}} .
$$

It is easily verified for $\|x\|$ large and $y \in B_{d}(o, a)$ that

$$
\frac{1}{\left[t^{2}+\|x\|^{2}+\|y\|^{2}-2\langle y, \xi\rangle\right]^{\gamma+(d+1) / 2}} \leq \frac{c}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+(d+1) / 2}}
$$

Therefore and using the fact that $t \leq\left(t^{2}+\|x\|^{2}\right)^{1 / 2}$, we obtain

$$
u_{k}(x, t) \leq \frac{c t}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+(d+1) / 2}} \leq \frac{c}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+d / 2}}
$$

Thus the first inequality is proven.
From (2.6) we can write

$$
u_{k}(x, t)=a_{k} \int_{B_{d}(o, a)} \int_{\mathcal{A}_{x, y}} \frac{t f(-y) d \Gamma_{y}(\xi) d \mu_{k}(y)}{\left[t^{2}+\|x\|^{2}+\|y\|^{2}+2\langle x, \xi\rangle\right]^{\gamma+(d+1) / 2}} .
$$

By derivation under the integral sign we obtain

$$
\frac{\partial u_{k}}{\partial x_{i}}(x, t)=a_{k} \int_{B_{d}(o, a)} \int_{\mathcal{A}_{x, y}} \frac{-t\left(2 x_{i}+\xi_{i}\right) f(-y) d \Gamma_{y}(\xi) d \mu_{k}(y)}{\left.t^{2}+\|x\|^{2}+\|y\|^{2}+2\langle x, \xi\rangle\right]^{\gamma+(d+3) / 2}}
$$

But for $\|x\|$ large and $y \in B_{d}(o, a)$ we have

$$
\frac{t\left|2 x_{i}+\xi_{i}\right|}{\left[t^{2}+\|x\|^{2}+\|y\|^{2}+2\langle x, \xi\rangle\right]^{\gamma+(d+3) / 2}} \leq \frac{t\left(2\left|x_{i}\right|+\left|\xi_{i}\right|\right)}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+(d+3) / 2}} .
$$

Using the fact that $t\left(2\left|x_{i}\right|+\left|\xi_{i}\right|\right) \leq\left(1+\left|\xi_{i}\right|\right)\left(t^{2}+\|x\|^{2}\right)$ when $\|x\|$ large, we obtain

$$
\left|\frac{\partial u_{k}}{\partial x_{i}}(x, t)\right| \leq \frac{c}{\left(t^{2}+\|x\|^{2}\right)^{\gamma+(d+1) / 2}}
$$

which proves the second inequality.
Lemma 3.3. Let $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ be a positive function and $\left.p \in\right] 1, \infty[$.
i) $\lim _{N \rightarrow \infty} \int_{B_{d}(o, N)} \int_{0}^{N} \frac{\partial^{2} u_{k}^{p}}{\partial t^{2}}(x, t) t d t d \mu_{k}(x)=\int_{\mathbb{R}^{d}} f^{p}(x) d \mu_{k}(x)$.
ii) $\lim _{N \rightarrow \infty} \int_{0}^{N} \int_{B_{d}(o, N)} L_{k} u_{k}^{p}(\cdot, t)(x) d \mu_{k}(x) t d t=0$,
where L_{k} is the singular elliptic operator given by (2.4).
Proof. i) Integrating by parts, we obtain

$$
\begin{aligned}
& \int_{B_{d}(o, N)} \int_{0}^{N} \frac{\partial^{2} u_{k}^{p}}{\partial t^{2}}(x, t) t d t d \mu_{k}(x) \\
&=\int_{B_{d}(o, N)} f^{p}(x) d \mu_{k}(x)-\int_{B_{d}(o, N)} u_{k}^{p}(x, N) d \mu_{k}(x) \\
&+p N \int_{B_{d}(o, N)} u_{k}^{p-1}(x, N) \frac{\partial u_{k}}{\partial t}(x, N) d \mu_{k}(x) .
\end{aligned}
$$

From Lemma 3.2i), we easily get

$$
\int_{B_{d}(o, N)} u_{k}^{p}(x, N) d \mu_{k}(x) \leq c N^{-(p-1)(2 \gamma+d)},
$$

and

$$
N \int_{B_{d}(o, N)} u_{k}^{p-1}(x, N) \frac{\partial u_{k}}{\partial t}(x, N) d \mu_{k}(x) \leq c N^{-(p-1)(2 \gamma+d)}
$$

which gives i).
ii) We have

$$
\int_{0}^{N} \int_{B_{d}(o, N)} L_{k} u_{k}^{p}(\cdot, t)(x) d \mu_{k}(x) t d t=\sum_{i=1}^{d} I_{i, N},
$$

where

$$
I_{i, N}=\int_{0}^{N} \int_{B_{d}(o, N)} \frac{\partial}{\partial x_{i}}\left(w_{k}(x) \frac{\partial u_{k}^{p}}{\partial x_{i}}(x, t)\right) d x t d t, \quad i=1, \ldots, d
$$

Let us study $I_{1, N}$:

$$
\begin{aligned}
& I_{1, N}=p \int_{0}^{N} \int_{B_{d-1}(o, N)} w_{k}\left(x^{(N)}\right)\left[u_{k}^{p-1}\left(x^{(N)}, t\right) \frac{\partial u_{k}}{\partial x_{1}}\left(x^{(N)}, t\right)\right. \\
&\left.-u_{k}^{p-1}\left(-x^{(N)}, t\right) \frac{\partial u_{k}}{\partial x_{1}}\left(-x^{(N)}, t\right)\right] d x_{2} \ldots d x_{d} t d t
\end{aligned}
$$

where $x^{(N)}=\left(\sqrt{N^{2}-\sum_{i=2}^{d} x_{i}^{2}}, x_{2}, \ldots, x_{d}\right)$.
Then, by using Lemma 3.2 ii) and the fact that $w_{k}\left(x^{(N)}\right) \leq 2^{\gamma} N^{2 \gamma}$ we obtain for N large,

$$
\begin{aligned}
I_{1, N} & \leq c N^{2 \gamma} \int_{0}^{N} \int_{B_{d-1}(o, N)} \frac{d x_{2} \ldots d x_{d} t d t}{\left(t^{2}+N^{2}\right)^{(\gamma+d / 2) p+1 / 2}} \\
& \leq c N^{-p(2 \gamma+d)+2 \gamma-1} \int_{0}^{N} \int_{B_{d-1}(o, N)} d x_{2} \ldots d x_{d} t d t \\
& \leq c N^{-(p-1)(2 \gamma+d)-(d-1) / 2} .
\end{aligned}
$$

The same result holds for $I_{i, N}, i=2, \ldots, d$, which proves ii).

Lemma 3.4. Let $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ be a positive function. Define the maximal function $\mathcal{M}_{k}(f)$, by

$$
\begin{equation*}
\mathcal{M}_{k}(f)(x):=\sup _{t>0}\left(u_{k}(x, t)\right), \quad x \in \mathbb{R}^{d} . \tag{3.3}
\end{equation*}
$$

Then for $p \in] 1, \infty\left[\right.$, there exists a constant $C_{p}>0$ such that, for $f \in L_{k}^{p}\left(\mathbb{R}^{d}\right)$,

$$
\left\|\mathcal{M}_{k}(f)\right\|_{L_{k}^{p}} \leq C_{p}\|f\|_{L_{k}^{p}}
$$

moreover the operator \mathcal{M}_{k} is of weak type $(1,1)$.
Proof. From (3.1) it follows that

$$
u_{k}(x, t)=\frac{t}{8 \sqrt{\pi}} \int_{0}^{\infty} W_{s} *_{k} f(x) e^{-t^{2} / 4 s} s^{-3 / 2} d s
$$

which implies, as in [18, p. 49] that

$$
\mathcal{M}_{k}(f)(x) \leq c \sup _{y>0}\left(\frac{1}{y} \int_{0}^{y} Q_{s} f(x) d s\right), \quad x \in \mathbb{R}^{d}
$$

where $Q_{s} f(x)=W_{s} *_{k} f(x)$, which is a semigroup of operators on $L_{k}^{p}\left(\mathbb{R}^{d}\right)$. Hence using the Hopf-Dunford-Schwartz ergodic theorem as in [18, p. 48], we get the boundedness of \mathcal{M}_{k} on $L_{k}^{p}\left(\mathbb{R}^{d}\right)$ for $\left.\left.p \in\right] 1, \infty\right]$ and weak type $(1,1)$.

Proof of Theorem [3.1] Let $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ be a positive function. From Lemma 3.2i) the generalized Poisson integral u_{k} of f is positive.
First step: Estimate of the quantity $\left|\frac{\partial}{\partial t} u_{k}(x, t)\right|^{2}+\left|\nabla_{x} u_{k}(x, t)\right|^{2}$.
Let \mathcal{H}_{k} be the operator:

$$
\mathcal{H}_{k}:=L_{k}+\frac{\partial^{2}}{\partial t^{2}},
$$

where L_{k} is the singular elliptic operator given by (2.3).
Using the fact that

$$
\Delta_{k} u_{k}(\cdot, t)(x)+\frac{\partial^{2}}{\partial t^{2}} u_{k}(x, t)=0
$$

we obtain for $p \in] 1, \infty[$,

$$
\mathcal{H}_{k} u_{k}^{p}(x, t)=p(p-1) u_{k}^{p-2}(x, t)\left[\left|\frac{\partial}{\partial t} u_{k}(x, t)\right|^{2}+\left|\nabla_{x} u_{k}(x, t)\right|^{2}\right]+p \sum_{\alpha \in R_{+}} k(\alpha) \frac{U_{\alpha}(x, t)}{\langle\alpha, x\rangle^{2}},
$$

where

$$
U_{\alpha}(x, t):=2 u_{k}^{p-1}(x, t)\left[u_{k}(x, t)-u_{k}\left(\sigma_{\alpha} x, t\right)\right], \quad \alpha \in R_{+} .
$$

Let $A, B \geq 0$, then the inequality

$$
2 A^{p-1}(A-B) \geq\left(A^{p-1}+B^{p-1}\right)(A-B)
$$

is equivalent to

$$
\left(A^{p-1}-B^{p-1}\right)(A-B) \geq 0,
$$

which holds if $A \geq B$ or $A<B$. Thus we deduce that

$$
U_{\alpha}(x, t) \geq\left[u_{k}^{p-1}(x, t)+u_{k}^{p-1}\left(\sigma_{\alpha} x, t\right)\right]\left[u_{k}(x, t)-u_{k}\left(\sigma_{\alpha} x, t\right)\right],
$$

and therefore we get

$$
\begin{equation*}
\left|\frac{\partial}{\partial t} u_{k}(x, t)\right|^{2}+\left|\nabla_{x} u_{k}(x, t)\right|^{2} \leq \frac{1}{p(p-1)} u_{k}^{2-p}(x, t)\left[v_{k}(x, t)+\mathcal{H}_{k} u_{k}^{p}(x, t)\right], \tag{3.4}
\end{equation*}
$$

where

$$
v_{k}(x, t)=p \sum_{\alpha \in R_{+}} \frac{k(\alpha)}{\langle\alpha, x\rangle^{2}}\left[u_{k}^{p-1}\left(\sigma_{\alpha} x, t\right)+u_{k}^{p-1}(x, t)\right]\left[u_{k}\left(\sigma_{\alpha} x, t\right)-u_{k}(x, t)\right] .
$$

Second step: The inequality $\|g(f)\|_{L_{k}^{p}} \leq A_{p}\|f\|_{L_{k}^{p}}$, for $\left.p \in\right] 1,2[$.
From (3.4), we have

$$
\begin{aligned}
{[g(f)(x)]^{2} } & \leq \frac{1}{p(p-1)} \int_{0}^{\infty} u_{k}^{2-p}(x, t)\left[v_{k}(x, t)+\mathcal{H}_{k} u_{k}^{p}(x, t)\right] t d t \\
& \leq \frac{1}{p(p-1)} \mathcal{I}_{k}(f)(x)\left[\mathcal{M}_{k}(f)(x)\right]^{2-p}, \quad x \in \mathbb{R}^{d},
\end{aligned}
$$

where

$$
\mathcal{I}_{k}(f)(x):=\int_{0}^{\infty}\left[v_{k}(x, t)+\mathcal{H}_{k} u_{k}^{p}(x, t)\right] t d t
$$

and $\mathcal{M}_{k}(f)$ the maximal function given by 3.3).
Thus it is proven that

$$
\|g(f)\|_{L_{k}^{p}}^{p} \leq\left(\frac{1}{p(p-1)}\right)^{\frac{p}{2}} \int_{\mathbb{R}^{d}}\left[\mathcal{I}_{k}(f)(x)\right]^{p / 2}\left[\mathcal{M}_{k}(f)(x)\right]^{(2-p) p / 2} d \mu_{k}(x)
$$

By applying Hölder's inequality, we obtain

$$
\begin{equation*}
\|g(f)\|_{L_{k}^{p}}^{p} \leq\left(\frac{1}{p(p-1)}\right)^{\frac{p}{2}}\left\|\mathcal{I}_{k}(f)\right\|_{L_{k}^{1}}^{p / 2}\left\|\mathcal{M}_{k}(f)\right\|_{L_{k}^{p}}^{(2-p) p / 2} \tag{3.5}
\end{equation*}
$$

Since $v_{k}(x, t)+\mathcal{H}_{k} u_{k}^{p}(x, t) \geq 0$, we can apply Fubini-Tonnelli's Theorem to obtain

$$
\left\|\mathcal{I}_{k}(f)\right\|_{L_{k}^{1}}=\lim _{N \rightarrow \infty} \int_{0}^{N} \int_{B_{d}(o, N)}\left[v_{k}(x, t)+\mathcal{H}_{k} u_{k}^{p}(x, t)\right] d \mu_{k}(x) t d t
$$

Putting $y=\sigma_{\alpha} x$ and using the fact that $\sigma_{\alpha}^{2}=i d ;\left\langle\sigma_{\alpha} y, \alpha\right\rangle=-\langle y, \alpha\rangle$, then as in the argument of [16, p. 390] we obtain

$$
\int_{B_{d}(o, N)} v_{k}(x, t) d \mu_{k}(x)=-\int_{B_{d}(o, N)} v_{k}(y, t) d \mu_{k}(y)
$$

Thus

$$
\int_{B_{d}(o, N)} v_{k}(x, t) d \mu_{k}(x)=0 .
$$

Hence from Lemma 3.3, we deduce that

$$
\begin{equation*}
\left\|\mathcal{I}_{\alpha}(f)\right\|_{L_{k}^{1}}=\lim _{N \rightarrow \infty} \int_{B_{d}(o, N)} \int_{0}^{N} \mathcal{H}_{k} u_{k}^{p}(x, t) t d t d \mu_{k}(x)=\|f\|_{L_{k}^{p}}^{p} . \tag{3.6}
\end{equation*}
$$

On the other hand from Lemma 3.4 we have

$$
\begin{equation*}
\left\|\mathcal{M}_{k}(f)\right\|_{L_{k}^{p}} \leq C_{p}\|f\|_{L_{k}^{p}} . \tag{3.7}
\end{equation*}
$$

Finally, from (3.5), (3.6) and (3.7), we obtain

$$
\|g(f)\|_{L_{k}^{p}} \leq A_{p}\|f\|_{L_{k}^{p}}, \quad A_{p}=\left(\frac{1}{p(p-1)}\right)^{\frac{1}{2}} C_{p}^{(2-p) / 2}
$$

Since the operator g is sub-linear, we obtain the inequality for $f \in \mathcal{D}\left(\mathbb{R}^{d}\right)$. And by an easy limiting argument one shows that the result is also true for any $\left.f \in L_{k}^{p}\left(\mathbb{R}^{d}\right), p \in\right] 1,2[$.

For the case $p=2$, using (3.4) and (3.6) we get

$$
\|g(f)\|_{L_{k}^{2}}^{2} \leq \frac{1}{2} \int_{\mathbb{R}^{d}} \int_{0}^{\infty}\left[v_{k}(x, t)+\mathcal{H}_{k} u_{k}^{2}(x, t)\right] t d t d \mu_{k}(x)=\frac{1}{2}\|f\|_{L_{k}^{2}}^{2},
$$

which completes the proof of the theorem.

References

[1] A. ACHOUR AND K. TRIMÈCHE, La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur $(0, \infty)$, Ann. Inst. Fourier, Grenoble, 33 (1983), 203-226.
[2] H. ANNABI AND A. FITOUHI, La g-fonction de Littlewood-Paley associée à une classe d'opérateurs différentiels sur $] 0, \infty[$ contenant l'opérateur de Bessel, C.R. Acad. Sc. Paris, 303 (1986), 411-413.
[3] T.H. BAKER and P.J. FORRESTER, The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys., 188 (1997), 175-216.
[4] T. COULHON, X.T. DUONG and X.D. LI, Littlewood-Paley-Stein functions on manifolds $1 \leq$ $p \leq 2$, Studia Math., 154 (2003), 37-57.
[5] C.F. DUNKL, Differential-difference operators associated with reflection groups, Trans. Amer. Math. Soc., 311 (1989), 167-183.
[6] C.F. DUNKL, Integral kernels with reflection group invariance, Can. J. Math., 43 (1991), 12131227.
[7] C.F. DUNKL, Hankel transforms associated to finite reflection groups, Contemp. Math., 138 (1992) 123-138.
[8] M.F.E. de JEU, The Dunkl transform, Inv. Math., 113 (1993), 147-162.
[9] L. LAPOINTE AND L. VINET, Exact operator solution of the Calogero- Sutherland model, Comm. Math. Phys., 178 (1996), 425-452.
[10] M. RÖSLER, Bessel-type signed hypergroups on \mathbb{R}, In : H.Heyer, A.Mukherjea (Eds.), Proc XI, Probability measures on groups and related structures, Oberwolfach, 1994, World Scientific, Singapore, (1995), p. 292-304.
[11] M. RÖSLER AND M. VOIT, Markov processes related with Dunkl operator, Adv. Appl. Math., 21 (1998), 575-643.
[12] M. RÖSLER, Positivity of Dunkl's intertwining operator, Duke Math. J., 98 (1999), 445-463.
[13] M. RÖSLER, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc., 355 (2003) 2413-2438.
[14] M. SIFI and F. SOLTANI, Generalized Fock spaces and Weyl relations for the Dunkl kernel on the real line, J. Math. Anal. Appl., 270 (2002), 92-106.
[15] F. SOLTANI, L^{p}-Fourier multipliers for the Dunkl operator on the real line, J. Functional Analysis, 209 (2004), 16-35.
[16] F. SOLTANI, Generalized Fock spaces and Weyl commutation relations for the Dunkl kernel, Pacific J. Math., 214 (2004), 379-397.
[17] F. SOLTANI, Inversion formulas in the Dunkl-type heat conduction on \mathbb{R}^{d}, Applicable Analysis, 84 (2005), 541-553.
[18] E.M. STEIN, Topics in Harmonic Analysis related to the Littlewood-Paley theory, Annals of Mathematical Studies, 63 (1970), Princeton Univ. Press, Princeton, New Jersey.
[19] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1971.
[20] K. STEMPAK, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R.A.S. Paris, Série I, Math., 303 (1986), 15-18.
[21] K. TRIMÈCHE, Inversion of the Lions transmutation operators using generalized wavelets, App. Comput. Harm. Anal., 4 (1997), 97-112.
[22] K. TRIMÈCHE, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of dual, Int. Trans. Spec. Funct., 12 (2001), 349-374.
[23] K. TRIMÈCHE, Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators, Int. Trans. Spec. Funct., 13 (2002), 17-38.
[24] G.N. WATSON, A Treatise on Theory of Bessel Functions, Cambridge University Press, 1966.
[25] A. ZYGMUND, Trigonometric Series, Cambridge University Press, 1959.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 The author is very grateful to the referee for many comments on this paper.
 183-04

