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1. I NTRODUCTION , DEFINITIONS AND PRELIMINARIES

LetAp(n) denote the class of functionsf(z) normalized by

f(z) = zp −
∞∑

τ=n+p

aτz
τ(1.1)

(aτ = 0; n, p ∈ N := {1, 2, 3, . . . }),

which areanalyticandp-valentin the open unit disk

U := {z : z ∈ C and |z| < 1}.

Analogous to the multiplier transformation onA, the operatorIp(r, µ), given onAp(1) by

Ip(r, µ)f(z) := zp −
∞∑

τ=p+1

(
τ + µ

p + µ

)r

aτz
τ

(
µ = 0; r ∈ Z; f ∈ Ap(1)

)
,

was studied by Kumaret al. [6]. It is easily verified that

(p + µ)Ip(r + 1, µ)f(z) = z[Ip(r, µ)f(z)]′ + µIp(r, µ)f(z).

The operatorIp(r, µ) is closely related to the Šalǎgean derivative operator [11]. The operator

Ir
µ := I1(r, µ)

was studied by Cho and Srivastava [4] and Cho and Kim [3]. Moreover, the operator

Ir := I1(r, 1)

was studied earlier by Uraleggadi and Somanatha [13].
Here, in our present investigation, we define the operatorIp(r, µ) onAp(n) by

Ip(r, µ)f(z) := zp −
∞∑

τ=n+p

(
τ + µ

p + µ

)r

aτz
τ(1.2)

(µ = 0; p ∈ N; r ∈ Z).

By using the operatorIp(r, µ)f(z) given by (1.2), we introduce a subclassSp
n,m(µ, r, λ, b) of

the p-valently analytic function classAp(n), which consists of functionsf(z) satisfying the
following inequality:∣∣∣∣1b

(
z[Ip(r, µ)f(z)](m+1) + λz2[Ip(r, µ)f(z)](m+2)

λz[Ip(r, µ)f(z)](m+1) + (1− λ)[Ip(r, µ)f(z)](m)
− (p−m)

)∣∣∣∣ < 1(1.3) (
z ∈ U; p ∈ N; m ∈ N0; r ∈ Z; µ = 0; λ = 0; p > max(m,−µ); b ∈ C \ {0}

)
.

Next, following the earlier investigations by Goodman [5], Ruscheweyh [10] and Altintaset
al. [2] (see also [1], [7] and [12]), we define the(n, δ)-neighborhood of a functionf(z) ∈ Ap(n)
by (see, for details, [2, p. 1668])

(1.4) Nn,δ(f) :=

{
g ∈ Ap(n) : g(z) = zp −

∞∑
τ=n+p

bτz
τ and

∞∑
τ=n+p

τ |aτ − bτ | 5 δ

}
.

It follows from (1.4) that, if

(1.5) h(z) = zp (p ∈ N),
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INCLUSION AND NEIGHBORHOODPROPERTIES 3

then

(1.6) Nn,δ(h) :=

{
g ∈ Ap(n) : g(z) = zp −

∞∑
τ=n+p

bτz
τ and

∞∑
τ=n+p

τ |bτ | 5 δ

}
.

Finally, we denote byRp
n,m(µ, r, λ, b) the subclass ofAp(n) consisting of functionsf(z)

which satisfy the inequality (1.7) below:

(1.7)

∣∣∣∣1b{
[1− λ(p−m− 1)][Ip(r, µ)f(z)](m+1) + λz[Ip(r, µ)f(z)](m+2) − (p−m)

}∣∣∣∣
< p−m(

z ∈ U; p ∈ N; m ∈ N0; r ∈ Z; µ = 0; λ = 0; p > max(m,−µ); b ∈ C \ {0}
)
.

The object of the present paper is to investigate the various properties and characteristics of
analyticp-valent functions belonging to the subclasses

Sp
n,m(µ, r, λ, b) and Rp

n,m(µ, r, λ, b),

which we have defined here. Apart from deriving a set of coefficient bounds for each of these
function classes, we establish several inclusion relationships involving the(n, δ)-neighborhoods
of analyticp-valent functions (with negative and missing coefficients) belonging to these sub-
classes.

Our definitions of the function classes

Sp
n,m(µ, r, λ, b) and Rp

n,m(µ, r, λ, b)

are motivated essentially by the earlier investigations of Orhan and Kamali [8], and of Raina
and Srivastava [9], in each of which further details and closely-related subclasses can be found.
In particular, in our definition of the function classes

Sp
n,m(µ, r, λ, b) and Rp

n,m(µ, r, λ, b)

involving the inequalities (1.3) and (1.7), we have relaxed the parametric constraint

0 5 λ 5 1,

which was imposed earlier by Orhan and Kamali [8, p. 57, Equations (1.10) and (1.11)] (see
also Remark 3 below).

2. A SET OF COEFFICIENT BOUNDS

In this section, we prove the following results which yield the coefficient inequalities for
functions in the subclasses

Sp
n,m(µ, r, λ, b) and Rp

n,m(µ, r, λ, b).

Theorem 1. Letf(z) ∈ Ap(n) be given by(1.1). Thenf(z) ∈ Sp
n,m(µ, r, λ, b) if and only if

(2.1)
∞∑

τ=n+p

(
τ + µ

p + µ

)r (
τ

m

)
[1 + λ(τ −m− 1)](τ − p + |b|)aτ

5 |b|
{(

p

m

)
[1 + λ(p−m− 1)]

}
,

where (
τ

m

)
=

τ(τ − 1) · · · (τ −m + 1)

m!
.
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Proof. Let a functionf(z) of the form (1.1) belong to the classSp
n,m(µ, r, λ, b). Then, in view

of (1.2) and (1.3), we have the following inequality:

(2.2) R

 −
∞∑

τ=n+p

(
τ+µ
p+µ

)r (
τ
m

)
(τ − p)[1 + λ(τ −m− 1)]aτz

τ−m

(
p
m

)
[1 + λ(p−m− 1)]zp−m −

∞∑
τ=n+p

(
τ+µ
p+µ

)r (
τ
m

)
[1 + λ(τ −m− 1)]aτzτ−m


> −|b| (z ∈ U).

Puttingz = r1 (0 5 r1 < 1) in (2.2), we observe that the expression in the denominator on the
left-hand side of (2.2) is positive forr1 = 0 and also for allr1 (0 < r1 < 1). Thus, by letting
r1 → 1− through real values, (2.2) leads us to the desired assertion (2.1) of Theorem 1.

Conversely, by applying (2.1) and setting|z| = 1, we find by using (1.2) that∣∣∣∣ z[Ip(r, µ)f(z)](m+1) + λz2[Ip(r, µ)f(z)](m+2)

λz[Ip(r, µ)f(z)](m+1) + (1− λ)[Ip(r, µ)f(z)](m)
− (p−m)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

τ=n+p

(
τ+µ
p+µ

)r (
τ
m

)
[1 + λ(τ −m− 1)](τ − p)aτ(

p
m

)
[1 + λ(p−m− 1)]−

∞∑
τ=n+p

(
τ+µ
p+µ

)r (
τ
m

)
[1 + λ(τ −m− 1)]aτ

∣∣∣∣∣∣∣∣
5

|b|
[(

p
m

)
[1 + λ(p−m− 1)]−

∞∑
τ=n+p

(
τ+µ
p+µ

)r (
τ
m

)
[1 + λ(τ −m− 1)]aτ

]
(

p
m

)
[1 + λ(p−m− 1)]−

∞∑
τ=n+p

(
τ+µ
p+µ

)r (
τ
m

)
[1 + λ(τ −m− 1)]aτ

= |b|.

Hence, by the maximum modulus principle, we infer thatf(z) ∈ Sp
n,m(µ, r, λ, b), which com-

pletes the proof of Theorem 1. �

Remark 1. In the special case when

m = 0, p = 1, b = βγ (0 < β 5 1; γ ∈ C \ {0}),(2.3)

r = Ω (Ω ∈ N0 := N ∪ {0}), τ = k + 1, and µ = 0,

Theorem1 corresponds to a result given earlier by Orhan and Kamali [8, p. 57, Lemma 1].

By using the same arguments as in the proof of Theorem 1, we can establish Theorem 2
below.

Theorem 2. Letf(z) ∈ Ap(n) be given by(1.1). Thenf(z) ∈ Rp
n,m(µ, r, λ, b) if and only if

(2.4)
∞∑

τ=n+p

(
τ + µ

p + µ

)r (
τ

m

)
(τ −m)[1 + λ(τ − p)]aτ 5 (p−m)

[
|b| − 1

m!
+

(
p

m

)]
.

Remark 2. Making use of the same parametric substitutions as mentioned above in(2.3), The-
orem2 yields another known result due to Orhan and Kamali [8, p. 58, Lemma 2].
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3. I NCLUSION RELATIONSHIPS I NVOLVING THE (n, δ)-NEIGHBORHOODS

In this section, we establish several inclusion relationships for the function classes

Sp
n,m(µ, r, λ, b) and Rp

n,m(µ, r, λ, b)

involving the(n, δ)-neighborhood defined by (1.6).

Theorem 3. If

(3.1) δ :=
|b|(n + p)

(
p
m

)
[1 + λ(p−m− 1)]

(n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

(p > |b|),

then

(3.2) Sp
n,m(µ, r, λ, b) ⊂ Nn,δ(h).

Proof. Let f(z) ∈ Sp
n,m(µ, r, λ, b). Then, in view of the assertion (2.1) of Theorem 1, we have

(n + |b|)
(

n + p + µ

p + µ

)r (
n + p

m

)
[1 + λ(n + p−m− 1)]

∞∑
τ=n+p

aτ

5 |b|
(

p

m

)
[1 + λ(p−m− 1)],

which yields

(3.3)
∞∑

τ=n+p

aτ 5
|b|

(
p
m

)
[1 + λ(p−m− 1)]

(n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

.

Applying the assertion (2.1) of Theorem 1 again, in conjunction with (3.3), we obtain(
n + p + µ

p + µ

)r (
n + p

m

)
[1 + λ(n + p−m− 1)]

∞∑
τ=n+p

τaτ

5 |b|
(

p

m

)
[1 + λ(p−m− 1)] + (p− |b|)

(
n + p + µ

p + µ

)r

·
(

n + p

m

)
[1 + λ(n + p−m− 1)]

∞∑
τ=n+p

aτ

5 |b|
(

p

m

)
[1 + λ(p−m− 1)] + (p− |b|)

(
n + p + µ

p + µ

)r

·
(

n + p

m

)
[1 + λ(n + p−m− 1)]

|b|
(

p
m

)
[1 + λ(p−m− 1)]

(n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

= |b|
(

p

m

)
[1 + λ(p−m− 1)]

(
n + p

n + |b|

)
.

Hence

(3.4)
∑

τ=n+p

τaτ 5
|b|(n + p)

(
p
m

)
[1 + λ(p−m− 1)]

(n + |b|)
(

n + p + µ

p + µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

=: δ (p > |b|),

which, by virtue of (1.6), establishes the inclusion relation (3.2) of Theorem 3. �
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Analogously, by applying the assertion (2.4) of Theorem 2 instead of the assertion (2.1)
of Theorem 1 to functions in the classRp

n,m(µ, r, λ, b), we can prove the following inclusion
relationship.

Theorem 4. If

(3.5) δ =
(p−m)

[
|b|−1
m!

+
(

p
m

)](
n+p+µ

p+µ

)r (
n+p−1

m

)
(1 + λn)

(
λ >

1

p

)
,

then

(3.6) Rp
n,m(µ, r, λ, b) ⊂ Nn,δ(h).

Remark 3. Applying the parametric substitutions listed in(2.3), Theorem3 and Theorem4
would yield the known results due to Orhan and Kamali [8, p. 58, Theorem 1; p. 59, Theorem
2]. Incidentally, just as we indicated in Section1 above, the conditionλ > 1 is needed in the
proof of one of these known results [8, p. 59, Theorem 2]. This implies that the constraint
0 5 λ 5 1 in [8, p. 57, Equations (1.10) and (1.11)] should be replaced by the less stringent
constraintλ = 0.

4. FURTHER NEIGHBORHOOD PROPERTIES

In this last section, we determine the neighborhood properties for each of the following
(slightly modified) function classes:

Sp,α
n,m(µ, r, λ, b) and Rp,α

n,m(µ, r, λ, b).

Here the classSp,α
n,m(µ, r, λ, b) consists of functionsf(z) ∈ Ap(n) for which there exists

another functiong(z) ∈ Sp
n,m(µ, r, λ, b) such that

(4.1)

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < p− α (z ∈ U; 0 5 α < p)

Analogously, the classRp,α
n,m(µ, r, λ, b) consists of functionsf(z) ∈ Ap(n) for which there

exists another functiong(z) ∈ Rp
n,m(µ, r, λ, b) satisfying the inequality (4.1).

Theorem 5. Letg(z) ∈ Sp
n,m(µ, r, λ, b). Suppose also that

(4.2) α = p− δ

n + p

·

 (n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

(n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]− |b|

(
p
m

)
[1 + λ(p−m− 1)]

 .

Then

(4.3) Nn,δ(g) ⊂ Sp,α
n,m(µ, r, λ, b).

Proof. Suppose thatf(z) ∈ Nn,δ(g). We then find from (1.4) that

(4.4)
∞∑

τ=n+p

τ |aτ − bτ | 5 δ,

which readily implies the following coefficient inequality:

(4.5)
∞∑

τ=n+p

|aτ − bτ | 5
δ

n + p
(n ∈ N).
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Next, sinceg ∈ Sp
n,m(µ, r, λ, b), we have

(4.6)
∞∑

τ=n+p

bτ 5
|b|

(
p
m

)
[1 + λ(p−m− 1)]

(n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

,

so that∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ <

∑∞
τ=n+p |aτ − bτ |

1−
∑∞

τ=n+p bτ

5
δ

n + p

1−
|b|

(
p
m

)
[1 + λ(p−m− 1)]

(n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

−1

=
δ

n + p

 (n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]

(n + |b|)
(

n+p+µ
p+µ

)r (
n+p
m

)
[1 + λ(n + p−m− 1)]− |b|

(
p
m

)
[1 + λ(p−m− 1)]


= p− α,

provided thatα is given precisely by (4.2). Thus, by definition,f ∈ Sp,α
n,m(µ, r, λ, b) for α given

by (4.2). This evidently completes the proof of Theorem 5. �

The proof of Theorem 6 below is much similar to that of Theorem 5; hence the proof of
Theorem 6 is being omitted.

Theorem 6. Letg(z) ∈ Rp,α
n,m(µ, r, λ, b). Suppose also that

(4.7) α = p− δ

n + p


(

n+p+µ
p+µ

)r (
n+p
m

)
(n + p−m)(1 + λn)(

n+p+µ
p+µ

)r (
n+p
m

)
(n + p−m)(1 + λn)− (p−m)

[
|b|−1
m!

+
(

p
m

)]
 .

Then

(4.8) Nn,δ(g) ⊂ Rp,α
n,m(µ, r, λ, b).

Remark 4. Applying the parametric substitutions listed in(2.3), Theorem5 and Theorem6
would yield the known results due to Orhan and Kamali [8, p. 60, Theorem 3; p. 61, Theorem
4].
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