Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 7, Issue 4, Article 128, 2006

TIME SCALE INTEGRAL INEQUALITIES SIMILAR TO QI'S INEQUALITY

MEHMET ZEKI SARIKAYA, UMUT MUTLU OZKAN, AND HÜSEYIN YILDIRIM

Department of Mathematics
Faculty of Science and Arts
Kocatepe University
AFYon-TURKEY
sarikaya@aku.edu.tr

umutlu@aku.edu.tr
hyildir@aku.edu.tr
Received 15 July, 2006; accepted 19 October, 2006
Communicated by D. Hinton

AbSTRACT. In this study, some integral inequalities and Qi's inequalities of which is proved by the Bougoffa [5] - [7] are extended to the general time scale.

Key words and phrases: Delta integral.
2000 Mathematics Subject Classification. 34B10 and 26D15.

1. Introduction

The unification and extension of continuous calculus, discret calculus, q-calculus, and indeed arbitrary real-number calculus to time scale calculus was first accomplished by Hilger in his PhD . thesis [8$]$. The purpose of this work is to extend some integral inequalities and Qi inequalities proved by Bougoffa [5] - [7]. The following definitions will serve as a short primer on time scale calculus; they can be found in [1] - [4]. A time scale \mathbb{T} is any nonempty closed subset of \mathbb{R}. Within that set, define the jump operators $\rho, \sigma: \mathbb{T} \rightarrow \mathbb{T}$ by

$$
\rho(t)=\sup \{s \in \mathbb{T}: s<t\} \quad \text { and } \quad \sigma(t)=\inf \{s \in \mathbb{T}: s>t\}
$$

where $\inf \phi:=\sup \mathbb{T}$ and $\sup \phi:=\inf \mathbb{T}$. If $\rho(t)=t$ and $\rho(t)<t$, then the point $t \in \mathbb{T}$ is left-dense, left-scattered. If $\sigma(t)=t$ and $\sigma(t)>t$, then the point $t \in \mathbb{T}$ is right-dense, right-scattered. If \mathbb{T} has a right-scattered minimum m, define $\mathbb{T}_{k}:=\mathbb{T}-\{m\}$; otherwise, set $\mathbb{T}_{k}=\mathbb{T}$. If \mathbb{T} has a left-scattered maximum M, define $\mathbb{T}^{k}:=\mathbb{T}-\{M\}$; otherwise, set $\mathbb{T}^{k}=\mathbb{T}$. The so-called graininess functions are $\mu(t):=\sigma(t)-t$ and $v(t):=t-\rho(t)$.

[^0]For $f: \mathbb{T} \rightarrow \mathbb{R}$ and $t \in \mathbb{T}^{k}$, the delta derivative in [3, 4] of f at t, denoted $f^{\Delta}(t)$, is the number (provided it exists) with the property that given any $\varepsilon>0$, there is a neighborhood U of t such that

$$
\left|f(\sigma(t))-f(s)-f^{\Delta}(t)[\sigma(t)-s]\right| \leq \varepsilon|\sigma(t)-s|
$$

for all $s \in U$. For $\mathbb{T}=\mathbb{R}, f^{\Delta}=f^{\prime}$, the usual derivative; for $\mathbb{T}=\mathbb{Z}$ the delta derivative is the forward difference operator, $f^{\Delta}(t)=f(t+1)-f(t)$; in the case of q-difference equations with $q>1$,

$$
f^{\Delta}(t)=\frac{f(q t)-f(t)}{(q-1) t}, \quad f^{\Delta}(0)=\lim _{s \rightarrow 0} \frac{f(s)-f(0)}{s}
$$

A function $f: \mathbb{T} \rightarrow \mathbb{R}$ is right-dense continuous or rd-continuous provided it is continuous at right-dense points in \mathbb{T} and its left-sided limits exist (finite) at left-dense points in \mathbb{T}. If $\mathbb{T}=\mathbb{R}$, then f is rd-continuous if and only if f is continuous. It is known from Theorem 1.74 in [3] that if f is right-dense continuous, there is a function F such that $F^{\Delta}(t)=f(t)$ and

$$
\int_{a}^{b} f(t) \Delta t=F(b)-F(a)
$$

Note that we have

$$
\sigma(t)=t, \quad \mu(t) \equiv 0, \quad f^{\Delta}=f^{\prime}, \quad \int_{a}^{b} f(t) \Delta t=\int_{a}^{b} f(t) d t, \quad \text { when } \mathbb{T}=\mathbb{R}
$$

while

$$
\sigma(t)=t+1, \quad \mu(t) \equiv 1, \quad f^{\Delta}=\Delta f, \quad \int_{a}^{b} f(t) \Delta t=\sum_{t=a}^{b-1} f(t), \quad \text { when } \mathbb{T}=\mathbb{Z}
$$

Much more information concerning time scales and dynamic equations on time scales can be found in the books [3, 4].

Theorem 1.1 (Hölder's inequality on time scales [3]). Let $a, b \in \mathbb{T}$. For rd-continuous functions $f, g:[a, b] \rightarrow \mathbb{R}$ we have

$$
\int_{a}^{b}|f(x) g(x)| \Delta x \leq\left(\int_{a}^{b}|f(x)|^{p} \Delta x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g(x)|^{q} \Delta x\right)^{\frac{1}{q}}
$$

where $p>1$ and $q=\frac{p}{p-1}$.

2. Main Results

In this section, we will state our main results and give their proofs.
Lemma 2.1. Let $a, b \in \mathbb{T}$, and $p>1$ and $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If two positive functions $f, g:[a, b] \rightarrow \mathbb{R}$ are rd-continuous and satisfying $0<m \leq \frac{f^{p}}{g^{q}} \leq M<\infty$ on the set $[a, b]$, then we have the following inequality

$$
\begin{equation*}
\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}}\left(\int_{a}^{b} g^{q} \Delta x\right)^{\frac{1}{q}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p q}} \int_{a}^{b} f g \Delta x \tag{2.1}
\end{equation*}
$$

Inequality (2.1) is called the reverse Hölder inequality.
Proof. Since $\frac{f^{p}}{g^{q}} \leq M, g \geq M^{-\frac{1}{q}} f^{\frac{p}{q}}$, therefore

$$
f g \geq M^{-\frac{1}{q}} f^{1+\frac{p}{q}}=M^{-\frac{1}{q}} f^{p}
$$

and so,

$$
\begin{equation*}
\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}} \leq M^{\frac{1}{p q}}\left(\int_{a}^{b} f g \Delta x\right)^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

On the other hand, since $m \leq \frac{f^{p}}{g^{q}}, f \geq m^{\frac{1}{p}} g^{\frac{q}{p}}$, hence

$$
\int_{a}^{b} f g \Delta x \geq \int_{a}^{b} m^{\frac{1}{p}} g^{1+\frac{q}{p}} \Delta x \geq m^{\frac{1}{p}} \int_{a}^{b} g^{q} \Delta x
$$

and so,

$$
\left(\int_{a}^{b} f g \Delta x\right)^{\frac{1}{q}} \geq m^{\frac{1}{p q}}\left(\int_{a}^{b} g^{q} \Delta x\right)^{\frac{1}{q}}
$$

Combining with $(\sqrt{2.2})$, we have the desired inequality

$$
\begin{aligned}
\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}}\left(\int_{a}^{b} g^{q} \Delta x\right)^{\frac{1}{q}} & \leq M^{\frac{1}{p q}}\left(\int_{a}^{b} f g \Delta x\right)^{\frac{1}{p}} m^{-\frac{1}{p q}}\left(\int_{a}^{b} g^{q} \Delta x\right)^{\frac{1}{q}} \\
& =\left(\frac{M}{m}\right)^{\frac{1}{p q}} \int_{a}^{b} f g \Delta x
\end{aligned}
$$

Corollary 2.2. In Lemma 2.1, replacing f^{p} and g^{q} by f and g, respectively, we obtain the reverse Hölder type inequality,

$$
\begin{equation*}
\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}}\left(\int_{a}^{b} g \Delta x\right)^{\frac{1}{q}} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}} \int_{a}^{b} f^{\frac{1}{p}} g^{\frac{1}{q}} \Delta x . \tag{2.3}
\end{equation*}
$$

The proof of this corollary can be obtained from (2.1).
Theorem 2.3. Let $a, b \in \mathbb{T}, p>1$ and $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If $f:[a, b] \rightarrow \mathbb{R}$ is $r d$-continuous and $0<m^{\frac{1}{p}} \leq f \leq M^{\frac{1}{p}}<\infty$ on $[a, b]$, then we have the following inequality

$$
\begin{equation*}
\left(\int_{a}^{b} f^{\frac{1}{p}} \Delta x\right)^{p} \geq(b-a)^{\frac{p+1}{q}}\left(\frac{m}{M}\right)^{\frac{p+1}{p q}}\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}} \tag{2.4}
\end{equation*}
$$

Proof. Putting $g \equiv 1$ in Lemma2.1, we obtain

$$
\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}}[b-a]^{\frac{1}{q}} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}} \int_{a}^{b} f \Delta x .
$$

Therefore, we get

$$
\begin{equation*}
\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}}[b-a]^{-\frac{1}{q}} \int_{a}^{b} f \Delta x . \tag{2.5}
\end{equation*}
$$

Again, substituting $g \equiv 1$ in Corollary 2.2 leads to

$$
\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}}[b-a]^{-\frac{1}{q}} \int_{a}^{b} f^{\frac{1}{p}} \Delta x,
$$

and so,

$$
\begin{equation*}
\int_{a}^{b} f \Delta x \leq\left(\frac{m}{M}\right)^{-\frac{1}{q}}[b-a]^{-\frac{p}{q}}\left(\int_{a}^{b} f^{\frac{1}{p}} \Delta x\right)^{p} \tag{2.6}
\end{equation*}
$$

Combining (2.5) with (2.6), we obtain

$$
\left(\int_{a}^{b} f^{\frac{1}{p}} \Delta x\right)^{p} \geq(b-a)^{\frac{p+1}{q}}\left(\frac{m}{M}\right)^{\frac{p+1}{p q}}\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}} .
$$

Corollary 2.4. If $0<m^{\frac{1}{p}} \leq f \leq M^{\frac{1}{p}}<\infty$ on $[a, b]$ and $\frac{m}{M}=[b-a]^{-p}$ for $p>1$, then

$$
\begin{equation*}
\left(\int_{a}^{b} f^{\frac{1}{p}} \Delta x\right)^{p} \geq\left(\int_{a}^{b} f^{p} \Delta x\right)^{\frac{1}{p}} \tag{2.7}
\end{equation*}
$$

Remark 2.5. For $\mathbb{T}=\mathbb{R}$, 2.7) is Qi's inequality [9].
Theorem 2.6. If $f:[a, b] \rightarrow \mathbb{R}$ is $r d$-continuous and $0<m \leq f(x) \leq M$ on $[a, b]$, then we have the following inequality

$$
\begin{equation*}
\int_{a}^{b} f^{\frac{1}{p}} \Delta x \geq B\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}-1} \tag{2.8}
\end{equation*}
$$

where $B=m(b-a)^{1+\frac{1}{q}}\left(\frac{m}{M}\right)^{\frac{1}{p q}}$ and $p>1, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$.
Proof. In Corollary 2.2, putting $g \equiv 1$ yields

$$
\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}}[b-a]^{\frac{1}{q}} \leq\left(\frac{m}{M}\right)^{-\frac{1}{p q}} \int_{a}^{b} f^{\frac{1}{p}} \Delta x
$$

and so,

$$
\int_{a}^{b} f^{\frac{1}{p}} \Delta x \geq\left(\frac{m}{M}\right)^{-\frac{1}{p q}}[b-a]^{\frac{1}{q}}\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}-1}\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}} .
$$

Since $0<m \leq f(x)$, we have

$$
\int_{a}^{b} f^{\frac{1}{p}} \Delta x \geq\left(\frac{m}{M}\right)^{\frac{1}{p q}} m[b-a]^{1+\frac{1}{q}}\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}-1}
$$

This proves inequality (2.8).
Corollary 2.7. Let $p>1$ and $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If

$$
m\left(\frac{m}{M}\right)^{\frac{1}{p q}}=\frac{1}{[b-a]^{1+\frac{1}{q}}}
$$

and $0<m \leq f(x) \leq M$ on $[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b} f^{\frac{1}{p}} \Delta x \geq\left(\int_{a}^{b} f \Delta x\right)^{\frac{1}{p}-1} \tag{2.9}
\end{equation*}
$$

Remark 2.8. For $\mathbb{T}=\mathbb{R}$, 2.9) is Qi's inequality [9].
Lemma 2.9. Let $a, b \in \mathbb{T}$, and $f, g:[a, b] \rightarrow \mathbb{R}$ be rd-continuous and nonnegative functions with $0<m \leq \frac{f}{g} \leq M<\infty$ on $[a, b]$. Then for $p>1$ and $q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ we have the following inequality

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}} \int_{a}^{b}[f(x)]^{\frac{1}{q}}[g(x)]^{\frac{1}{p}} \Delta x \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}}\left(\int_{a}^{b} f(x) \Delta x\right)^{\frac{1}{q}}\left(\int_{a}^{b} g(x) \Delta x\right)^{\frac{1}{p}} \tag{2.11}
\end{equation*}
$$

Proof. From Hölder's inequality, we obtain

$$
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x \leq\left(\int_{a}^{b} f(x) \Delta x\right)^{\frac{1}{q}}\left(\int_{a}^{b} g(x) \Delta x\right)^{\frac{1}{p}}
$$

that is,

$$
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x \leq\left(\int_{a}^{b}[f(x)]^{\frac{1}{p}}[f(x)]^{\frac{1}{q}} \Delta x\right)^{\frac{1}{q}}\left(\int_{a}^{b}[g(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x\right)^{\frac{1}{p}}
$$

Since $[f(x)]^{\frac{1}{p}} \leq M^{\frac{1}{p}}[g(x)]^{\frac{1}{p}}$ and $[g(x)]^{\frac{1}{q}} \leq m^{-\frac{1}{q}}[f(x)]^{\frac{1}{q}}$, from the above inequality it follows that

$$
\begin{aligned}
& \int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x \\
& \quad \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}}\left(\int_{a}^{b}[g(x)]^{\frac{1}{p}}[f(x)]^{\frac{1}{q}} \Delta x\right)^{\frac{1}{q}}\left(\int_{a}^{b}[g(x)]^{\frac{1}{p}}[f(x)]^{\frac{1}{q}} \Delta x\right)^{\frac{1}{p}}
\end{aligned}
$$

and so,

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x \leq M^{\frac{1}{p^{2}}} m^{-\frac{1}{q^{2}}} \int_{a}^{b}[f(x)]^{\frac{1}{q}}[g(x)]^{\frac{1}{p}} \Delta x . \tag{2.12}
\end{equation*}
$$

Hence, the inequality $(\sqrt{2.10})$ is proved.
The inequality (2.11) follows from substituting the following

$$
\int_{a}^{b}[f(x)]^{\frac{1}{p}}[g(x)]^{\frac{1}{q}} \Delta x \leq\left(\int_{a}^{b} f(x) \Delta x\right)^{\frac{1}{q}}\left(\int_{a}^{b} g(x) \Delta x\right)^{\frac{1}{p}}
$$

into (2.12), which can be obtained by Hölder's inequality on time scales.
Lemma 2.10. Let $a, b \in \mathbb{T}$. For a given positive integer $p \geq 2$, if $f:[a, b] \rightarrow \mathbb{R}$ is rd-continuous and $0<m \leq \frac{f}{g} \leq M<\infty$ on $[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{\frac{1}{p}} \Delta x \leq\left(\int_{a}^{b} f(x) \Delta x\right)^{1-\frac{1}{p}} \tag{2.13}
\end{equation*}
$$

Proof. Putting $g(x) \equiv 1$ in 2.11) yields

$$
\int_{a}^{b}[f(x)]^{\frac{1}{p}} \Delta x \leq K\left(\int_{a}^{b} f(x) \Delta x\right)^{1-\frac{1}{p}}
$$

where $K=\frac{M^{\frac{1}{p^{2}}}(b-a)^{\frac{1}{p}}}{m^{\left(1-\frac{1}{p}\right)^{2}}}$. From $M \leq \frac{m^{(p-1)^{2}}}{(b-a)^{p}}$, we conclude that $K \leq 1$. Thus the inequality (2.13) is proved.

In the following we generalize to arbitrary time scales a result in [6].

Theorem 2.11. Let $a, b \in \mathbb{T}$. If $f, g:[a, b] \rightarrow \mathbb{R}$ is $r d$-continuous and satisfying $0<m \leq \frac{f}{g} \leq$ $M<\infty$ on $[a, b]$, then we have the following inequality

$$
\begin{equation*}
\left(\int_{a}^{b} f^{p}(x) \Delta x\right)^{\frac{1}{p}}+\left(\int_{a}^{b} g^{p}(x) \Delta x\right)^{\frac{1}{p}} \leq c\left(\int_{a}^{b}(f(x)+g(x))^{p} \Delta x\right)^{1-\frac{1}{p}} \tag{2.14}
\end{equation*}
$$

where $c=\left(\frac{m}{M}\right)^{\frac{1}{p^{q}}}$.
Proof. It follows from Lemma 2.1 that

$$
\begin{aligned}
& \int_{a}^{b}(f(x)+g(x))^{p} \Delta x \\
& =\int_{a}^{b}(f(x)+g(x))^{p-1} f(x) \Delta x+\int_{a}^{b}(f(x)+g(x))^{p-1} g(x) \Delta x \\
& \geq\left(\frac{M}{m}\right)^{\frac{1}{p q}}\left(\int_{a}^{b} f^{p}(x) \Delta x\right)^{\frac{1}{p}}\left(\int_{a}^{b}(f(x)+g(x))^{q(p-1)} \Delta x\right)^{\frac{1}{q}} \\
& \quad+\left(\frac{M}{m}\right)^{\frac{1}{p q}}\left(\int_{a}^{b} g^{p}(x) \Delta x\right)^{\frac{1}{p}}\left(\int_{a}^{b}(f(x)+g(x))^{q(p-1)} \Delta x\right)^{\frac{1}{q}} \\
& =\left(\frac{M}{m}\right)^{\frac{1}{p q}}\left(\int_{a}^{b}(f(x)+g(x))^{p} \Delta x\right)^{\frac{1}{q}} \\
& \quad \times
\end{aligned} \quad\left[\left(\int_{a}^{b} f^{p}(x) \Delta x\right)^{\frac{1}{p}}+\left(\int_{a}^{b} g^{p}(x) \Delta x\right)^{\frac{1}{p}}\right] .
$$

Therefore, we obtain

$$
\begin{aligned}
{\left[\left(\int_{a}^{b} f^{p}(x) \Delta x\right)^{\frac{1}{p}}+\left(\int_{a}^{b} g^{p}(x) \Delta x\right)^{\frac{1}{p}}\right] } & \leq\left(\frac{m}{M}\right)^{\frac{1}{p q}}\left(\int_{a}^{b}(f(x)+g(x))^{p} \Delta x\right)^{1-\frac{1}{q}} \\
& =\left(\frac{m}{M}\right)^{\frac{1}{p q}}\left(\int_{a}^{b}(f(x)+g(x))^{p} \Delta x\right)^{p}
\end{aligned}
$$

where $q(p-1)=p$.
Example 2.1. Let $\mathbb{T}=\mathbb{Z}$. Let $f(x)=3^{x}$ and $g(x)=x^{2}$ on $[3,4]$ with $M \approx 5.06$ and $m=3$. Taking $p=2$, we see that the conditions of Lemma 2.1 are fulfilled. Therefore, for

$$
\begin{gathered}
\left(\int_{3}^{4} 3^{2 x} \Delta x\right)^{\frac{1}{2}}=\left(\frac{1}{8}\left(3^{8}-3^{6}\right)\right)^{\frac{1}{2}}=3^{3} \\
\left(\int_{3}^{4} x^{4} \Delta x\right)^{\frac{1}{2}}=\left(\sum_{x=3}^{4-1} x^{4}\right)^{\frac{1}{2}}=3^{2}
\end{gathered}
$$

and

$$
\int_{3}^{4} 3^{x} x^{2} \Delta x=\sum_{x=3}^{4-1} 3^{x} x^{2}=3^{5}
$$

we get

$$
\left(\int_{3}^{4} 3^{2 x} \Delta x\right)^{\frac{1}{2}}\left(\int_{3}^{4} x^{4} \Delta x\right)^{\frac{1}{2}}=243 \leq\left(\frac{5.06}{3}\right)^{\frac{1}{4}} \int_{3}^{4} 3^{x} x^{2} \Delta x \approx 274.6
$$

References

[1] R.P. AGARWAL AND M. BOHNER, Basic calculus on time scales and some of its applications, Results Math., 35(1-2) (1999), 3-22.
[2] F.M. ATICI AND G.Sh. GUSEINOV, On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141 (2002) 75-99.
[3] M. BOHNER AND A. PETERSON, Dynamic Equations on Time Scales, an Introduction with Applications, Birkhauser, Boston (2001).
[4] M. BOHNER AND A. PETERSON, Advances in Dynamic Equations on Time Scales, Birkhauser Boston, Massachusetts (2003).
[5] L. BOUGOFFA, Notes on Qi’s type integral inequalities, J. Inequal. Pure and Appl. Math., 4(4) (2003), Art. 77. [ONLINE: http://jipam.vu.edu.au/article.php?sid=318].
[6] L. BOUGOFFA, An integral inequality similar to Qi’s inequality, J. Inequal. Pure and Appl. Math., 6(1) (2005), Art 27. [ONLINE: http: / /jipam.vu.edu.au/article.php?sid=496].
[7] L. BOUGOFFA, On Minkowski and Hardy integral inequalities, J. Inequal. Pure and Appl. Math., 7(2) (2006), Art. 60. [ONLINE: http://jipam.vu.edu.au/article.php?sid=677].
[8] S. HILGER, Ein Maßkettenkalkül mit Anwendung auf Zentrmsmannigfaltingkeiten, PhD thesis, Univarsi. Würzburg (1988).
[9] F. QI, Several integral inequalities, J. Inequal. Pure and Appl. Math., 1(2) (2000). [ONLINE: http: //jipam.vu.edu.au/article.php?sid=113].

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 188-06

