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Abstract

If A is an isotonic linear functional and f : [a, b] → (0,∞) is a monotone function
then Q(r, f) = (f r(a) + f r(b)−A(f r))1/r is increasing in r.
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1. Introduction
Let 0 < a ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b andwk (1 ≤ k ≤ n) be positive weights
associated with thesexk and whose sum is unity. A Mc D. Mercer [3] proved
the following variant of Jensen’s inequality.

Theorem 1.1. If f is a convex function on an interval containing the pointsxk

then

(1.1) f

(
a + b−

n∑
k=1

wkxk

)
≤ f(a) + f(b)−

n∑
k=1

wkf(xk).

The weighted power meansMr(x, w) of the numberxi with weightswi are
defined as

Mr(x, w) =

(
n∑

k=1

wkx
r
k

) 1
r

for r 6= 0

M0(x, w) = exp

(
n∑

k=1

wk ln xk

)
.

In [2] Mercer defined the family of functions

Qr(a, b, x) = (ar + br −M r
r (x, w))

1
r for r 6= 0

Q0(a, b, x) =
ab

M0

and proved the following (see also [4]):
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Theorem 1.2.For r < s, Qr(a, b, x) ≤ Qs(a, b, x).

In [3] are given another proofs of the above theorems.
Let us consider a isotonic linear functionalA, i.e., a functionalA : C[a, b] →

R with the properties:

(i) A(tf + sg) = tA(f) + sA(g) for t, s ∈ R, f, g ∈ C[a, b];

(ii) A(f) ≥ 0 of f(x) ≥ 0 for all x ∈ [a, b].

In [1] A. Lupaş proved the following result:
“If f is a convex function andA is an isotonic linear functional withA(e0) = 1,
then

(1.2) f(a1) ≤ A(f) ≤ (b− a1)f(a) + (a1 − a)f(b)

b− a
,

whereei : [a, b] → R, ei(x) = xi anda1 = A(e1).
Let A be an isotonic linear functional defined onC[a, b] such thatA(e0) = 1.

For a real numberr and positive functionf , f ∈ C[a, b] we define the power
mean of orderr as

(1.3) M(r, f) =

 (A(f r))
1
r for r 6= 0

exp (A(log f)) for r = 0

and for every monotone functionf : [a, b] → (0,∞)

(1.4) Q(r; f) =


(f r(a) + f r(b)−M r(r, f))

1
r , r 6= 0

f(a)f(b)
exp(A(log f))

, r = 0

.
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2. Main results
Our main results are given in the following theorems. LetA be an isotonic
linear functional defined onC[a, b] such thatA(e0) = 1.

Theorem 2.1.Letf be a convex function on[a, b]. Then

f(a + b− a1) ≤ A(g) ≤ f(a) + f(b)− f(a)
b− a1

b− a
− f(b)

a1 − a

b− a
(2.1)

≤ f(a) + f(b)− A(f),

whereg = f(a + b− ·).

Theorem 2.2.Let r, s ∈ R such thatr ≤ s. Then

(2.2) Q(r, f) ≤ Q(s, f),

for every monotone positive function.

Proof of Theorem2.1. The functiong is a convex function. From inequality
(1.2), written for the functiong we get:

(2.3) f(a + b− a1) ≤ A(g) ≤ (b− a1)f(b) + (a1 − a)f(a)

b− a
.

Using Hadamard’s inequality (1.2) relative to the functionf we obtain

(2.4) A(f) ≤ f(a)
b− a1

b− a
+ f(b)

a1 − a

b− a
.
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However,

(2.5)
(b− a1)f(b) + (a1 − a)f(a)

b− a

= f(a) + f(b)− f(a)
b− a1

b− a
− f(b)

a1 − a

b− a
.

Now (2.1) follows by (2.5), (2.4) and (2.3).

Proof of Theorem2.2. Let us denoteα = f r(a), β = f r(b). If 0 < r < s
then the functiong(x) = xs/r is convex. Let us consider the following isotonic
linear functionalB : C[α, β] → R defined byB(h) = A(h ◦ f r), whereα =
min(f r(a), f r(b)), β = max(f r(a), f r(b)). We have:

B(e1) = A(f r).

From (2.1) we get

g(α + β −B(e1)) ≤ g(α) + g(β)−B(g)

or
(f(a)r + f r(b)− A(f)r)s/r ≤ f s(a) + f s(b)− A(f s).

The last inequality is equivalent to

Q(r, f) ≤ A(s, f).

For r < s < 0, g is concave and we obtain

(f r(a) + f r(b)− A(f r))s/r ≥ f s(a) + f s(b)− A(f s)
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which is also equivalent toQ(r, f) ≤ Q(s, f). Finally, applying (2.1) to the
concave functionlog x for the functional

B(g) = A(g ◦ f r),

we have
log (α + β − A(f r)) ≥ log α + log β − A (log f r) ,

or
r log(Q(r, f)) ≥ r log Q(0, f),

which shows that forr > 0

Q(−r, f) ≤ Q(0, f) ≤ Q(r, f).

Remark 2.1. For the functionalA, A : C[a, b] → R defined by

A(f) =
n∑

k=1

wkf(xk),

in the particular case whenf(x) = xr we obtain Theorem1.2.
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