HARDY-TYPE INEQUALITIES FOR HERMITE EXPANSIONS

R. BALASUBRAMANIAN AND R. RADHA
The Institute of Mathematical Sciences
C.I.T. CAMPUS
Tharamani
Chennai - 600113 INDIA
balu@imsc.ernet.in
Department of Mathematics
Indian Institute of Technology Madras
Chennai - 600036 INDIA
radharam@iitm.ac.in

Received 13 October, 2004; accepted 04 December, 2004
Communicated by H.M. Srivastava

AbSTRACT. Hardy-type inequalities are established for Hermite expansions for $f \in H^{p}(\mathbb{R}), 0<$ $p \leq 1$.

Key words and phrases: Atomic decomposition, Fourier-Hermite coefficient, Hardy spaces, Hermite functions.
2000 Mathematics Subject Classification Primary: 42C10; Secondary: 42B30, 33C45.

1. Introduction

Hardy's inequality for a Fourier transform \mathcal{F} is stated as

$$
\int_{\mathbb{R}} \frac{|\mathcal{F} f(\xi)|^{p}}{|\xi|^{2-p}} d \xi \leq C\|f\|_{\operatorname{Re} H^{p}}^{p} \quad 0<p \leq 1,
$$

where $\operatorname{Re} H^{p}$ denotes the real Hardy space consisting of the boundary values of real parts of functions in the Hardy space H^{p} on the unit disc in the plane. Kanjin in [1] has proved Hardy's inequalities for Hermite and Laguerre expansions for functions in H^{1}. In [4] Satake has obtained Hardy's inequalities for Laguerre expansions for H^{p} where $0<p \leq 1$. In connection with regularity properties of spherical means on \mathbb{C}^{n}, Thangavelu [6] has proved a Hardy's inequality for special Hermite functions. These type of inequalities for higher dimensional expansions are studied in [2], [3]. In this short note we obtain such inequalities for Hermite expansions for one dimension, namely for $f \in H^{p}(\mathbb{R}), 0<p \leq 1$. In fact, it is to be noted from Theorem 2.1 that the resulting inequality for Hermite expansions $(0<p \leq 1)$ is sharper than the inequalities for the classical Fourier transform as well as the Laguerre function expansion.

[^0]An H^{p} atom, $0<p \leq 1$ is defined to be a function a satisfying the following conditions:
i. a is supported in an interval $[b, b+h]$
ii. $|a(x)| \leq h^{-1 / p}$ almost everywhere and
iii. $\int_{\mathbb{R}} x^{k} a(x) d x=0$ for all $k=0,1,2, \ldots,\left[\frac{1}{p}-1\right]$.

Making use of the atomic decomposition we define the Hardy space H^{p} to be the collection of all functions f satisfying $f=\sum_{k=0}^{\infty} \lambda_{k} a_{k}$, where a_{j} is an H^{p} - atom, λ_{k} is a sequence of complex numbers with $\sum\left|\lambda_{k}\right|^{p}<\infty$ and

$$
C\|f\|_{H^{p}} \leq\left(\sum\left|\lambda_{k}\right|^{p}\right)^{\frac{1}{p}} \leq C^{\prime}\|f\|_{H^{p}}
$$

For various other definitions of H^{p}-spaces we refer to Stein [5].

2. The Main Result

Let H_{k} denote the Hermite polynomials

$$
H_{k}(x)=(-1)^{k} \frac{d^{k}}{d x^{k}}\left(e^{-x^{2}}\right) e^{x^{2}}, \quad k=0,1,2, \ldots
$$

Then the Hermite functions $\tilde{h_{k}}$ are defined by

$$
\tilde{h_{k}}(x)=H_{k}(x) e^{-\frac{1}{2} x^{2}}, \quad k=0,1,2, \ldots
$$

The normalized Hermite functions h_{k} are defined as

$$
h_{k}(x)=\left(2^{k} k!\sqrt{\pi}\right)^{-\frac{1}{2}} \tilde{h_{k}}(x) .
$$

These functions $\left\{h_{k}\right\}$ form an orthonormal basis for $L^{2}(\mathbb{R})$. They are eigenfunctions for the Hermite operator $H=-\Delta+x^{2}$ with eigenvalues $2 k+1$. For more results concerning Hermite expansions, we refer to [7].

The following inequalities for Hermite functions are well known:

$$
\left|h_{k}(x)\right| \leq C k^{-\frac{1}{12}} \quad \text { and } \quad\left|\frac{d}{d x} h_{k}(x)\right| \leq C k^{\frac{5}{12}}
$$

Using these inequalities and the relation

$$
\frac{d}{d x} h_{k}(x)=\left(\frac{k}{2}\right)^{\frac{1}{2}} h_{k-1}(x)+\left(\frac{k+1}{2}\right)^{\frac{1}{2}} h_{k+1}(x)
$$

we obtain the estimate

$$
\left|\frac{d^{m}}{d x^{m}} h_{k}(x)\right| \leq C k^{-\frac{1}{12}+\frac{m}{2}} \quad \text { for } \quad m=0,1,2, \ldots
$$

which can be verified easily by applying induction on m.
Theorem 2.1. Let $\left\{h_{k}\right\}$ be the normalized Hermite functions on \mathbb{R}. Let $0<p \leq 1$ and $m=$ $\left[\frac{1}{p}\right]$. Then for every $f \in H^{p}(\mathbb{R})$, the Fourier - Hermite coefficient of f, namely,

$$
\hat{f}(k)=\int_{\mathbb{R}} f(x) h_{k}(x) d x, \quad k=0,1,2,3, \ldots
$$

satisfies the inequality

$$
\sum_{k=0}^{\infty} \frac{|\hat{f}(k)|^{p}}{(k+1)^{\sigma}} \leq C\|f\|_{H^{p}}
$$

where C is a constant and $\sigma=\frac{2-p}{12}\left\{\frac{18 m+11}{2 m+1}\right\}=\left(\frac{3}{4}+\frac{1}{12 m+6}\right)(2-p)$.

Proof. In order to prove the theorem, it is enough to prove that

$$
\sum_{k=0}^{\infty} \frac{|\hat{f}(k)|^{p}}{(k+1)^{\sigma}} \leq C
$$

for an H^{p}-atom f. Let f be an H^{p} atom. By considering the remainder term of the Taylor series expansion for $h_{k}(x)$, we write the Fourier-Hermite coefficient of f as

$$
\hat{f}(k)=\frac{1}{m!} \int_{b}^{b+h} f(x) \frac{d^{m}}{d t^{m}} h_{k}(t)(x-b)^{m} d x
$$

where $t \in[b, x]$ and $m=\left[\frac{1}{p}\right]$.
Then

$$
\begin{aligned}
|\hat{f}(k)| & \leq C h^{m} \int_{b}^{b+h}|f(x)|\left|\frac{d^{m}}{d t^{m}} h_{k}(t)\right| d x \\
& \leq C h^{m} k^{-\frac{1}{12}+\frac{m}{2}} \int_{b}^{b+h}|f(x)| d x \\
& \leq C h^{m} k^{-\frac{1}{12}+\frac{m}{2}} h^{-\frac{1}{p}+1}
\end{aligned}
$$

Consider

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{|\hat{f}(k)|^{p}}{(k+1)^{\sigma}} & =\sum_{k \leq \gamma} \frac{|\hat{f}(k)|^{p}}{(k+1)^{\sigma}}+\sum_{k>\gamma} \frac{|\hat{f}(k)|^{p}}{(k+1)^{\sigma}} \\
& =S_{1}+S_{2}
\end{aligned}
$$

We choose $\gamma=h^{-6 \frac{(2 m+1)}{6 m+5}}$.
Then

$$
S_{1} \leq C h^{m p-1+p} \sum_{k \leq \gamma} k \frac{\frac{-p}{12}+\frac{m p}{2}}{(k+1)^{\sigma}} .
$$

Since $\sigma=\frac{2-p}{12}\left\{\frac{18 m+11}{2 m+1}\right\}$ and $m=\left[\frac{1}{p}\right]$, we get

$$
\left(\frac{m}{2}-\frac{1}{12}\right) p-\sigma+1=\frac{(6 m+5)\{(m+1) p-1\}}{2 m+1}>0 .
$$

Thus

$$
S_{1} \leq C h^{m p-1+p} \gamma^{\left(\frac{m}{2}-\frac{1}{12}\right) p-\sigma+1} \leq C
$$

by the choice of γ.
On the other hand, applying Hölder's inequality with $P=\frac{2}{p}$, we get,

$$
\begin{aligned}
S_{2} & =\sum_{k>\gamma} \frac{|\hat{f}(k)|^{p}}{(k+1)^{\sigma}} \\
& \leq\left(\sum_{k>\gamma}|\hat{f}(k)|^{2}\right)^{\frac{p}{2}}\left(\sum_{k>\gamma} \frac{1}{(k+1)^{\frac{2 \sigma}{2-p}}}\right)^{\frac{2-p}{2}} \\
& \leq\|f\|_{2}^{p} \gamma^{\left(-\frac{2 \sigma}{2-p}+1\right)^{\frac{2-p}{2}}} .
\end{aligned}
$$

Using property (ii) of an H^{p}-atom, we get $\|f\|_{2}^{p} \leq h^{-1+\frac{p}{2}}$ and thus

$$
S_{2} \leq h^{-1+\frac{p}{2}} \gamma^{-\sigma+\left(\frac{2-p}{2}\right)} \leq C
$$

again by the choice of γ, thus proving our assertion.
Remark 2.2. In the case of higher dimensions, the result has been proved with $\sigma=\left(\frac{n}{4}+\frac{1}{2}\right)(2-$ p) (see [3]). However, here, we need an additional factor $\frac{1}{12 m+6}$ which approaches 0 as $p \rightarrow 0$. But when $p=1$, the value of $\sigma=\frac{29}{36}$, which coincides with the result of Kanjin in [1].

References

[1] Y. KANJIN, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Soc., 29 (1997), 331-337.
[2] R. RADHA, Hardy type inequalities, Taiwanese J. Math., 4 (2000), 447-456.
[3] R. RADHA and S. THANGAVELU, Hardy's inequalities for Hermite and Laguerre expansions, Proc. Amer. Math. Soc., 132(12) (2004), 3525-3536.
[4] M. SATAKE, Hardy's inequalities for Laguerre expansions, J. Math. Soc., 52(1) (2000), 17-24.
[5] E.M. STEIN, Harmonic Analysis: Real variable methods, Orthogonality and Oscillatory integrals, Princeton Univ. Press, 1993.
[6] S. THANGAVELU, On regularity of twisted spherical means and special Hermite expansion, Proc. Ind. Acad. Sci., 103 (1993), 303-320.
[7] S. THANGAVELU, Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton Univ. Press, 1993.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 One of the authors (R.R.) wishes to thank Prof. S. Thangavelu for initiating her into this work.
 191-04

